Publication:
The Investigation of Temperature Data in Turkey's Black Sea Region Using Functional Data Analysis

dc.authorscopusid57742708900
dc.authorscopusid36911404600
dc.authorwosidSözen, Çağlar/Adk-8792-2022
dc.contributor.authorSozen, Caglar
dc.contributor.authorOner, Yuksel
dc.contributor.authorIDSözen, Çağlar/0000-0002-3732-5058
dc.contributor.authorIDÖner, Yüksel/0000-0003-2433-3304
dc.date.accessioned2025-12-11T01:20:37Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sozen, Caglar] Giresun Univ, Dept Banking & Finance, Giresun, Turkey; [Oner, Yuksel] Ondokuz Mayis Univ, Dept Stat, Samsun, Turkeyen_US
dc.descriptionSözen, Çağlar/0000-0002-3732-5058; Öner, Yüksel/0000-0003-2433-3304en_US
dc.description.abstractAs the field of study expands, or as the number of observations in a sample increases, data observed at discrete points is generally assumed to be sampled from an underlying real function. As the number of observation points increases, those observations are likely to be sampled from a real-valued function. In this case, the derived data will be examples of a functional structure. We analyzed the daily average temperature data at 65 discrete points in 18 cities in Turkey's Black Sea Region. Fourier basis functions were used as a basis function approach because the temperature data had a periodic structure. The data were then transformed into a continuous function using the basis function and roughness penalty approach. Functional data were obtained using the roughness penalty approach. The generalized cross-validation method was used to determine the smoothing parameter of the variable (temperature variable). Finally, smoothed functional principal components analysis was applied to the functional data. In this way, changes in temperature functions, which seem hard to tackle, were evaluated on the same graph using the mean function generated for the principal component function and using the functions and the mean function obtained using the principal component function.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1080/02664763.2021.1896683
dc.identifier.endpage2415en_US
dc.identifier.issn0266-4763
dc.identifier.issn1360-0532
dc.identifier.issue9en_US
dc.identifier.pmid35755091
dc.identifier.scopus2-s2.0-85132009291
dc.identifier.scopusqualityQ2
dc.identifier.startpage2403en_US
dc.identifier.urihttps://doi.org/10.1080/02664763.2021.1896683
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43033
dc.identifier.volume49en_US
dc.identifier.wosWOS:000624983900001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofJournal of Applied Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBasis Functionen_US
dc.subjectRoughness Penalty Approachen_US
dc.subjectSmoothed Functional Principal Components Analysisen_US
dc.subjectGeneralized Cross-Validationen_US
dc.subjectTemperature Dataen_US
dc.titleThe Investigation of Temperature Data in Turkey's Black Sea Region Using Functional Data Analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files