Publication:
Free Vibration and Buckling Analyses of Balsa Core Sandwich Composite Plates With Fiber Metal Laminate Facesheets Using the Generalized Differential Quadrature Method

dc.authorscopusid57204552000
dc.authorwosidMaras, Sinan/Abc-5863-2020
dc.contributor.authorMaraş, Sinan
dc.contributor.authorIDMaraş, Si̇nan/0000-0002-2651-374X
dc.date.accessioned2025-12-11T01:05:38Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Maras, Sinan] Ondokuz Mayis Univ, Mech Engn Dept, TR-55139 Samsun, Turkiyeen_US
dc.descriptionMaraş, Si̇nan/0000-0002-2651-374Xen_US
dc.description.abstractThere is significant potential for natural materials to replace conventional materials as the primary components in sandwich structures. Utilizing these natural alternatives during the manufacturing process can substantially reduce carbon emissions while enhancing material characteristics such as recyclability and renewability. This study examines the free vibration and buckling behaviors of balsa core sandwich composite plates with fiber metal laminate facesheets. The plate's kinematics are assumed to adhere to classical plate theory. After deriving the coupled equations of motion and buckling, the generalized differential quadrature method is employed to numerically solve these problems. The precision and convergence of the numerical model are validated by comparing the results obtained using the present method with those in existing literature. The current model shows an average agreement of over 97% with the reference models. An extensive analysis is then conducted to assess the effects of balsa core thickness, fiber orientation angles, the number of aluminum layers, boundary conditions, and aspect ratios on natural frequencies and buckling loads. It has been observed that among these parameters, the aspect ratio, core thickness, and boundary conditions are the most influential factors on natural frequencies and buckling loads. The results indicate that with the appropriate design of the balsa core thickness and the hybrid composite layers on the top and bottom surfaces, the sandwich structure exhibits superior mechanical and dynamic properties.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s13369-024-09517-1
dc.identifier.endpage9610en_US
dc.identifier.issn2193-567X
dc.identifier.issn2191-4281
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-85207248645
dc.identifier.scopusqualityQ1
dc.identifier.startpage9583en_US
dc.identifier.urihttps://doi.org/10.1007/s13369-024-09517-1
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41282
dc.identifier.volume50en_US
dc.identifier.wosWOS:001338057500005
dc.identifier.wosqualityQ2
dc.institutionauthorMaraş, Sinan
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofArabian Journal for Science and Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSandwich Composite Structuresen_US
dc.subjectFiber Metal Laminatesen_US
dc.subjectNaturalen_US
dc.subjectBalsaen_US
dc.subjectVibrationen_US
dc.subjectBucklingen_US
dc.subjectGeneralized Differential Quadrature Methoden_US
dc.titleFree Vibration and Buckling Analyses of Balsa Core Sandwich Composite Plates With Fiber Metal Laminate Facesheets Using the Generalized Differential Quadrature Methoden_US
dc.typeArticleen_US
dspace.entity.typePublication

Files