Publication: Bir Halka Ailesi Üzerinde Tanımlı Skew Constacyclic Kodlar
Abstract
Bu tez çalışmasında, ilk olarak tanımlanan, v_i^2=v_i, v_1v_2=v_2v_1, v_iv_j=v_jv_i=0 (i=1,2,3,4, j=3,4, i≠j) ve p bir tek asal, m pozitif bir tamsayı, q=p^m olmak üzere B_q=F_q+v_1F_q+v_2F_q+v_3F_q+v_4F_q+v_1v_2F_q sonlu, birimli, değişmeli halka ailesi üzerinde eleman sayısı ve minimum uzaklığı yüksek kod aileleri elde etmek amacıyla aşikar olmayan bir 𝛩 otomorfizması yardımıyla skew constacyclic kodlar çalışılmış ve bunların polinom temsilleri belirlenmiştir. İlk bölümde, kodlamanın tarihi kısaca özetlenmiş ve kullanım alanlarına değinilmiştir. Daha sonra kodlama teorisinin ortaya çıkışı ve temel problemlerinden bahsedilmiştir. Son olarak cyclic, skew cyclic, skew constacyclic kodlarla ilgili literatür bilgisi verilmiştir. İkinci bölümünde cebir, kodlama teorisi ile ilgili temel tanım ve teoremler verilmiştir. Üçüncü bölümde, B_q=F_q+v_1F_q+v_2F_q+v_3F_q+v_4F_q+v_1v_2F_q halka ailesi tanıtılmıştır. B_q^n den F_q^6n e bir Gray dönüşümü tanımlanıp F_q^6 üzerinde devirli kodlar verilmiştir. Daha sonra B_q üzerinde aşikar olmayan bir 𝛩 otomorfizması tanımlanıp bu otomorfizma yardımıyla 𝐵_𝑞[𝑥,𝛩] skew polinom halkası oluşturulmuştur. Son olarak 𝜆 birimseliyle birlikte bu halka üzerinde skew 𝜆-constacyclic kodlar tanımlanıp özellikleri incelenmiş ve bazı örnekler verilmiştir.
In this thesis, skew constacyclic codes are investigated to obtain code families with a high number of elements and minimum distance on a finite, unitary, commutative ring family B_q=F_q+v_1F_q+v_2F_q+v_3F_q+v_4F_q+v_1v_2F_q, where v_i^2=v_i, v_1v_2=v_2v_1, v_iv_j=v_jv_i=0 (i=1,2,3,4, j=3,4, i≠j) and 𝑝 is an odd prime, 𝑚 is a positive integer and 𝑞 = 𝑝^𝑚, using a non-trivial 𝛩-automorphism. Their polynomial representations have been determined. In the first section, a brief overview of the history of coding is provided, along with discussions on its applications. Subsequently, the emergence of coding theory and its fundamental problems are discussed. Finally, literature information related to cyclic, skew cyclic and skew constacyclic codes is presented. In the second section, basic definitions and theorems related to algebra and coding theory are provided. In the third section, the ring family B_q=F_q+v_1F_q+v_2F_q+v_3F_q+v_4F_q+v_1v_2F_q is introduced. A Gray map from 𝐵_𝑞^𝑛 to 𝔽_𝑞^6𝑛 is defined and cyclic codes over 𝔽_𝑞^6 are given. Then, a non-trivial 𝛩-automorphism is defined over 𝐵𝐵𝑞𝑞 and using this automorphism, the 𝐵𝑞[𝑥,𝛩] skew polynomial ring is constructed. Finally, skew 𝜆-constacyclic codes over this ring, along with their properties, are defined and some examples are given.
In this thesis, skew constacyclic codes are investigated to obtain code families with a high number of elements and minimum distance on a finite, unitary, commutative ring family B_q=F_q+v_1F_q+v_2F_q+v_3F_q+v_4F_q+v_1v_2F_q, where v_i^2=v_i, v_1v_2=v_2v_1, v_iv_j=v_jv_i=0 (i=1,2,3,4, j=3,4, i≠j) and 𝑝 is an odd prime, 𝑚 is a positive integer and 𝑞 = 𝑝^𝑚, using a non-trivial 𝛩-automorphism. Their polynomial representations have been determined. In the first section, a brief overview of the history of coding is provided, along with discussions on its applications. Subsequently, the emergence of coding theory and its fundamental problems are discussed. Finally, literature information related to cyclic, skew cyclic and skew constacyclic codes is presented. In the second section, basic definitions and theorems related to algebra and coding theory are provided. In the third section, the ring family B_q=F_q+v_1F_q+v_2F_q+v_3F_q+v_4F_q+v_1v_2F_q is introduced. A Gray map from 𝐵_𝑞^𝑛 to 𝔽_𝑞^6𝑛 is defined and cyclic codes over 𝔽_𝑞^6 are given. Then, a non-trivial 𝛩-automorphism is defined over 𝐵𝐵𝑞𝑞 and using this automorphism, the 𝐵𝑞[𝑥,𝛩] skew polynomial ring is constructed. Finally, skew 𝜆-constacyclic codes over this ring, along with their properties, are defined and some examples are given.
Description
Keywords
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
66
