Publication:
Bilinear Multipliers of Weighted Wiener Amalgam Spaces and Variable Exponent Wiener Amalgam Spaces

dc.authorscopusid50262327400
dc.authorscopusid55666393900
dc.contributor.authorKulak, Ö.
dc.contributor.authorTuran Gürkanli, A.T.
dc.date.accessioned2020-06-21T13:52:23Z
dc.date.available2020-06-21T13:52:23Z
dc.date.issued2014
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kulak] Öznur, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Turan Gürkanli] Ahmet, Department of Mathematics and Computer Science, İstanbul Arel Üniversitesi, Istanbul, Turkeyen_US
dc.description.abstractLet [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] be slowly increasing weight functions, and let [InlineEquation not available: see fulltext.] be any weight function on [InlineEquation not available: see fulltext.]. Assume that [InlineEquation not available: see fulltext.] is a bounded, measurable function on [InlineEquation not available: see fulltext.]. We define [Equation not available: see fulltext.] for all [InlineEquation not available: see fulltext.]. We say that [InlineEquation not available: see fulltext.] is a bilinear multiplier on [InlineEquation not available: see fulltext.] of type [InlineEquation not available: see fulltext.] if [InlineEquation not available: see fulltext.] is a bounded operator from [InlineEquation not available: see fulltext.] to [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.]. We denote by [InlineEquation not available: see fulltext.] the vector space of bilinear multipliers of type [InlineEquation not available: see fulltext.]. In the first section of this work, we investigate some properties of this space and we give some examples of these bilinear multipliers. In the second section, by using variable exponent Wiener amalgam spaces, we define the bilinear multipliers of type [InlineEquation not available: see fulltext.] from [InlineEquation not available: see fulltext.] to [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] for all [InlineEquation not available: see fulltext.]. We denote by [InlineEquation not available: see fulltext.] the vector space of bilinear multipliers of type [InlineEquation not available: see fulltext.]. Similarly, we discuss some properties of this space. MSC:42A45, 42B15, 42B35. © 2014, Kulak and Gürkanl¿; licensee Springer.en_US
dc.identifier.doi10.1186/1029-242X-2014-476
dc.identifier.issn1025-5834
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84934992759
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2014-476
dc.identifier.volume2014en_US
dc.identifier.wosWOS:000347469100003
dc.language.isoenen_US
dc.publisherSpringer International Publishingen_US
dc.relation.ispartofJournal of Inequalities and Applicationsen_US
dc.relation.journalJournal of Inequalities and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBilinear Multipliersen_US
dc.subjectVariable Exponent Wiener Amalgam Spaceen_US
dc.subjectWeighted Wiener Amalgam Spaceen_US
dc.titleBilinear Multipliers of Weighted Wiener Amalgam Spaces and Variable Exponent Wiener Amalgam Spacesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files