Publication: Bilinear Multipliers of Weighted Wiener Amalgam Spaces and Variable Exponent Wiener Amalgam Spaces
| dc.authorscopusid | 50262327400 | |
| dc.authorscopusid | 55666393900 | |
| dc.contributor.author | Kulak, Ö. | |
| dc.contributor.author | Turan Gürkanli, A.T. | |
| dc.date.accessioned | 2020-06-21T13:52:23Z | |
| dc.date.available | 2020-06-21T13:52:23Z | |
| dc.date.issued | 2014 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Kulak] Öznur, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Turan Gürkanli] Ahmet, Department of Mathematics and Computer Science, İstanbul Arel Üniversitesi, Istanbul, Turkey | en_US |
| dc.description.abstract | Let [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] be slowly increasing weight functions, and let [InlineEquation not available: see fulltext.] be any weight function on [InlineEquation not available: see fulltext.]. Assume that [InlineEquation not available: see fulltext.] is a bounded, measurable function on [InlineEquation not available: see fulltext.]. We define [Equation not available: see fulltext.] for all [InlineEquation not available: see fulltext.]. We say that [InlineEquation not available: see fulltext.] is a bilinear multiplier on [InlineEquation not available: see fulltext.] of type [InlineEquation not available: see fulltext.] if [InlineEquation not available: see fulltext.] is a bounded operator from [InlineEquation not available: see fulltext.] to [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.]. We denote by [InlineEquation not available: see fulltext.] the vector space of bilinear multipliers of type [InlineEquation not available: see fulltext.]. In the first section of this work, we investigate some properties of this space and we give some examples of these bilinear multipliers. In the second section, by using variable exponent Wiener amalgam spaces, we define the bilinear multipliers of type [InlineEquation not available: see fulltext.] from [InlineEquation not available: see fulltext.] to [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] for all [InlineEquation not available: see fulltext.]. We denote by [InlineEquation not available: see fulltext.] the vector space of bilinear multipliers of type [InlineEquation not available: see fulltext.]. Similarly, we discuss some properties of this space. MSC:42A45, 42B15, 42B35. © 2014, Kulak and Gürkanl¿; licensee Springer. | en_US |
| dc.identifier.doi | 10.1186/1029-242X-2014-476 | |
| dc.identifier.issn | 1025-5834 | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-84934992759 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1186/1029-242X-2014-476 | |
| dc.identifier.volume | 2014 | en_US |
| dc.identifier.wos | WOS:000347469100003 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer International Publishing | en_US |
| dc.relation.ispartof | Journal of Inequalities and Applications | en_US |
| dc.relation.journal | Journal of Inequalities and Applications | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Bilinear Multipliers | en_US |
| dc.subject | Variable Exponent Wiener Amalgam Space | en_US |
| dc.subject | Weighted Wiener Amalgam Space | en_US |
| dc.title | Bilinear Multipliers of Weighted Wiener Amalgam Spaces and Variable Exponent Wiener Amalgam Spaces | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
