Publication:
From Experimental Data to Predictions: Artificial Intelligence Supported New Mathematical Approaches for Estimating Thermal Conductivity, Viscosity and Zeta Potential in Fe3O4-Water Magnetic Nanofluids

dc.authorscopusid57215829500
dc.authorscopusid57194852098
dc.authorscopusid16024305000
dc.authorscopusid57216657788
dc.authorwosidGokcek, Murat/M-6787-2019
dc.authorwosidSahi̇n, Fevzi/L-8303-2018
dc.authorwosidGenc, Omer/Kma-2266-2024
dc.authorwosidÇolak, Andaç Batur/Aav-3639-2020
dc.authorwosidSahin, Fevzi/L-8303-2018
dc.contributor.authorSahin, Fevzi
dc.contributor.authorGenc, Omer
dc.contributor.authorGokcek, Murat
dc.contributor.authorColak, Andac Batur
dc.contributor.authorIDGokcek, Murat/0000-0002-7951-4236
dc.contributor.authorIDÇolak, Andaç Batur/0000-0001-9297-8134
dc.contributor.authorIDGenc, Omer/0000-0003-0849-6867
dc.contributor.authorIDSahin, Fevzi/0000-0002-4808-4915
dc.date.accessioned2025-12-11T01:33:32Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sahin, Fevzi] Ondokuz Mayis Univ, Mech Engn Dept, TR-55200 Samsun, Turkiye; [Genc, Omer; Gokcek, Murat] Nigde Omer Halisdemir Univ, Mech Engn Dept, TR-51100 Nigde, Turkiye; [Genc, Omer] Nigde Omer Halisdemir Univ, Prof Dr T Nejat Veziroglu Clean Energy Res Ctr, TR-51240 Nigde, Turkiye; [Colak, Andac Batur] Istanbul Ticaret Univ, Informat Technol Applicat & Res Ctr, TR-34445 Istanbul, Turkiyeen_US
dc.descriptionGokcek, Murat/0000-0002-7951-4236; Çolak, Andaç Batur/0000-0001-9297-8134; Genc, Omer/0000-0003-0849-6867; Sahin, Fevzi/0000-0002-4808-4915en_US
dc.description.abstractMagnetic nanofluids (MNs) are considered advanced heat transfer fluids of the future due to their ability to function as intelligent fluids, with the applied external magnetic field effect being readily manageable. In this study, firstly, the stabilities of Fe3O4-water MNs prepared at 0.1, 0.25, 0.5, 0.75 and 1 mass ratios were determined by zeta potential measurement. The thermal conductivity and viscosities of MNs with appropriate stability were measured at 20-60 degrees C for all mass ratios. Secondly, using experimental data, two different artificial neural network (ANN) models were developed: one for thermal conductivity and viscosity depending on the temperature (20-60 degrees C) and mass ratio values and one for zeta potential depending on pH and mass ratio. Finally, using the obtained ANN data, two new mathematical correlations are proposed to predict thermal conductivity and viscosity. The study's results revealed that the developed ANN model has MSE and R values of 4.51E-06 and 0.99968, respectively, for thermal conductivity and viscosity of Fe3O4-water MNs can be accurately predicted by novel mathematical correlations.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.powtec.2023.118974
dc.identifier.issn0032-5910
dc.identifier.issn1873-328X
dc.identifier.scopus2-s2.0-85171158071
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.powtec.2023.118974
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44573
dc.identifier.volume430en_US
dc.identifier.wosWOS:001150061600001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofPowder Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMagnetic Nanofluiden_US
dc.subjectThermal Conductivityen_US
dc.subjectViscosityen_US
dc.subjectZeta Potentialen_US
dc.subjectArtificial Neural Networken_US
dc.titleFrom Experimental Data to Predictions: Artificial Intelligence Supported New Mathematical Approaches for Estimating Thermal Conductivity, Viscosity and Zeta Potential in Fe3O4-Water Magnetic Nanofluidsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files