Publication: Manyetik Nanopartikül-Kitosan Kompleksinin Mikrodalga Hipertermi Karakterizasyonunun Araştırılması
Abstract
Manyetik Nanopartiküller (MNP)'lerin indüklenme yoluyla hipertermi uygulaması, klinikte tanı ve tedavi için alternatif yaklaşımlar sunmaktadır. Manyetik nanopartikül hipertermi (MNPH) uygulaması, sağlıklı dokuyu korurken hedeflenen kötü huylu hücrelerin seçici olarak ısınmasını sağlayabilmektedir. Bununla birlikte, MNP'lerin karakterizasyonlarını tespit edebilmek, maddeyi tanımlayabilmek için önemlidir. Bu tez çalışmasının amacı, sentezlenen C-MNP'nin madde karakterizasyonu ve sağlıklı meme ve tümör doku eşdeğeri doku üzerinde C-MNP'nin MW hipertermi termal etkinliğini araştırmaktır. Bu çalışma iki temel aşamada gerçekleştirildi. Çalışmanın ilk aşamasında, iyonik jelasyon ile nanopresipitasyon tekniği kullanılarak kitosan ile kaplanmış Fe3O4 nanopartikülleri (C-MNP) sentezlendi ve DLS, ZetaSizer, DSC, FTIR, XRD ve SEM cihazları ile madde karakterizasyon çalışmaları gerçekleştirildi. İkinci aşamada, termal karakterizasyon için, MW uygulaması termal kamera ile görüntülenerek sayısal veriler elde edildi ve Pico TC-08 Thermocouple cihazı ile de sıcaklık kaydı yapıldı. Elde edilen sayısal veriler istatistiksel analiz ile değerlendirildi. Gruplar, sağlıklı meme doku eşdeğeri, tümörlü doku eşdeğeri, Tümörlü Doku+MNP, tümörlü doku eşdeğeri+C-MNP olarak oluşturuldu ve aynı zaman süreci içerisinde MW'ya maruz bırakıldı. DLS sonuçlarına göre, Fe3O4 ve C-MNP nanopartiküllerinin boyutları sırasıyla, 571,5 ve 665,9 nm, Zeta potansiyelleri ise, 30,4 ve -15,6 mV olarak bulundu. C-MNP'lerin XRD analiz sonuçlarına göre, Fe3O4 nanopartiküllerine ait keskin pikler gözlenmedi. Ancak FTIR analizi sonuçlarına göre, yaklaşık 500-790 cm-1 civarında gözlemlenen pik Fe-O bağının titreşimine karşılık geldiği görüldü ve bu durum C-MNP'de Fe3O4 varlığını ispatladı. DSC analizi sonucunda, C-MNP'lerin, 97,14 °C'de erime noktasına karşılık gelen bir endotermik pik görüldü. C-MNP'lerin boyut analizleri sonuçları SEM ile incelendiğinde, C-MNP'lerin boyutu 24,87±11,5 nm olarak tespit edildi. Termal karakterizasyon sonuçlarına göre, Thermocouple cihazı ile yapılan sıcaklık ölçümlerindeki Sağlıklı Doku ve Tümörlü Doku ile diğer gruplar arasında yapılan karşılaştırmada istatistiksel anlamlılık bulundu (p=0.0015; p<0.0001). Termal kamera sonuçlarında ise gruplar arasındaki karşılaştırmada istatistiksel anlamlılık olduğu görüldü (p<0.0001). Sonuç olarak, C-MNP kompleksinin başarılı bir şekilde oluşturulduğu ve MW uygulamasıyla klinikte hipertermi tedavisi için uygun olduğu öngörüldü. Bu öngörünün desteklenmesi için hayvan çalışmalarına ihtiyaç duyulmaktadır.
The application of hyperthermia by induction of Magnetic Nanoparticles (MNPs) presents alternative approaches for diagnosis and treatmen in the clinic. Magnetic nanoparticle hyperthermia (MNPH) can selectively heat the targeted malignant cells while preserving healthy tissue. However, being able to detect the characterizations of MNPs is important to be able to identify the matter. The aim of this thesis the matter characterization of synthesized C-MNP and the MW hyperthermia thermal efficiency of C-MNP on healthy breast and tumor equivalent tissue were investigated. This study was carried out in two main stages. In the first stage of the study, Fe3O4 nanoparticles (C-MNP) coated with chitosan were synthesized using the Ionic Gelation Nanoprecipitation Technique and matter characterization studies were carried out with DLS, ZetaSizer, DSC, FTIR, XRD and SEM devices. In the second stage, for thermal characterization, the MW application was imaged with a thermal camera, and the temperature was recorded with the Pico TC-08 Thermocouple device. The obtained numerical data were evaluated by statistical analysis. Groups were formed as Healthy Tissue, Tumor Tissue, Tumor Tissue+MNP, Tumor Tissue+C-MNP and were exposed to MW during the same time period. According to DLS results, the sizes of Fe3O4 and C-MNP nanoparticles were found to be 571.5 and 665.9 nm, respectively and their Zeta Potentials were 30.4 and -15.6 mV, respectively. According to the XRD analysis results of C-MNPs, no sharp peaks of Fe3O4 nanoparticles were observed. However, according to the results of the FTIR analysis, it was observed that the peak observed around 500-790 cm-1 corresponds to the vibration of the Fe-O bond and this proved the presence of Fe3O4 in C-MNP. As a result of DSC analysis, an endothermic peak corresponding to the melting point of C-MNPs at 97,14 °C was observed. When the size analysis results of C-MNPs were investigated by SEM, the size of C-MNPs was found to be 24.87±11.5 nm. According to the thermal characterization results, statistical significance was found in the comparison between Healthy Tissue and Tumor Tissue and other groups in temperature measurements made with the Thermocouple device (p=0.0015; p<0.0001). In the thermal camera results, it was observed that there was statistical significance in the comparison between the groups (p<0.0001). As a result, it was predicted that the C-MNP complex was successfully formed and appropriate for clinical hyperthermia treatment with MW application. Animal studies are needed to support this prediction.
The application of hyperthermia by induction of Magnetic Nanoparticles (MNPs) presents alternative approaches for diagnosis and treatmen in the clinic. Magnetic nanoparticle hyperthermia (MNPH) can selectively heat the targeted malignant cells while preserving healthy tissue. However, being able to detect the characterizations of MNPs is important to be able to identify the matter. The aim of this thesis the matter characterization of synthesized C-MNP and the MW hyperthermia thermal efficiency of C-MNP on healthy breast and tumor equivalent tissue were investigated. This study was carried out in two main stages. In the first stage of the study, Fe3O4 nanoparticles (C-MNP) coated with chitosan were synthesized using the Ionic Gelation Nanoprecipitation Technique and matter characterization studies were carried out with DLS, ZetaSizer, DSC, FTIR, XRD and SEM devices. In the second stage, for thermal characterization, the MW application was imaged with a thermal camera, and the temperature was recorded with the Pico TC-08 Thermocouple device. The obtained numerical data were evaluated by statistical analysis. Groups were formed as Healthy Tissue, Tumor Tissue, Tumor Tissue+MNP, Tumor Tissue+C-MNP and were exposed to MW during the same time period. According to DLS results, the sizes of Fe3O4 and C-MNP nanoparticles were found to be 571.5 and 665.9 nm, respectively and their Zeta Potentials were 30.4 and -15.6 mV, respectively. According to the XRD analysis results of C-MNPs, no sharp peaks of Fe3O4 nanoparticles were observed. However, according to the results of the FTIR analysis, it was observed that the peak observed around 500-790 cm-1 corresponds to the vibration of the Fe-O bond and this proved the presence of Fe3O4 in C-MNP. As a result of DSC analysis, an endothermic peak corresponding to the melting point of C-MNPs at 97,14 °C was observed. When the size analysis results of C-MNPs were investigated by SEM, the size of C-MNPs was found to be 24.87±11.5 nm. According to the thermal characterization results, statistical significance was found in the comparison between Healthy Tissue and Tumor Tissue and other groups in temperature measurements made with the Thermocouple device (p=0.0015; p<0.0001). In the thermal camera results, it was observed that there was statistical significance in the comparison between the groups (p<0.0001). As a result, it was predicted that the C-MNP complex was successfully formed and appropriate for clinical hyperthermia treatment with MW application. Animal studies are needed to support this prediction.
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
76
