Publication:
Classification of EMG Signals by K-Nearest Neighbor Algorithm and Support Vector Machine Methods

dc.authorscopusid55807927000
dc.authorscopusid35732398300
dc.authorscopusid7801457993
dc.contributor.authorKüçük, H.
dc.contributor.authorTepe, C.
dc.contributor.authorEminoǧlu, I.
dc.date.accessioned2025-12-10T22:30:04Z
dc.date.issued2013
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Küçük] Hanife, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Tepe] Cengiz, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Eminoǧlu] Ilyas, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractElectromyography (EMG) is a medical measurement system. EMG measurements are required for the diagnosis of some diseases and used in order to facilitate physicians' work. In this study, MUAPs' in an EMG data set that contains both healthy and Amyotrophic Lateral Sclerosis (ALS) disease subjects are represented in time domain and frequency domain with a total of 10 feature vectors. Two pattern recognition methods, namely k-Nearest Neighbor (k-NN) and Support vector machine (SVM) classifier are employed and compared. In terms of classification accuracy, k-NN classifier give slightly higher success rate than SVM classifier for the existing data set and feature vectors. © 2013 IEEE.en_US
dc.identifier.doi10.1109/SIU.2013.6531240
dc.identifier.isbn9781467355629
dc.identifier.scopus2-s2.0-84880877220
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/SIU.2013.6531240
dc.identifier.urihttps://hdl.handle.net/20.500.12712/35163
dc.identifier.wosqualityN/A
dc.language.isotren_US
dc.relation.ispartof-- 2013 21st Signal Processing and Communications Applications Conference, SIU 2013en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectALSen_US
dc.subjectEMGen_US
dc.subjectk-NNen_US
dc.subjectSVMen_US
dc.titleClassification of EMG Signals by K-Nearest Neighbor Algorithm and Support Vector Machine Methodsen_US
dc.title.alternativeK-En Yakın Komşu Algoritması ve Destek Vektör Makinesi Yöntemleri İle EMG İşaretlerinin Sınıflandırılmasıen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files