Publication:
Prediction of Body Weight by Using PCA-Supported Gradient Boosting and Random Forest Algorithms in Water Buffaloes (Bubalus Bubalis) Reared in South-Eastern Mexico

dc.authorscopusid6506711817
dc.authorscopusid56957224200
dc.authorscopusid16041736300
dc.authorscopusid56372398900
dc.authorscopusid35274529700
dc.authorscopusid57208533345
dc.authorscopusid56223703300
dc.authorwosidVazquez, Armando/P-2764-2018
dc.authorwosidTırınk, Cem/Gry-5893-2022
dc.authorwosidOkuyucu, Ibrahim/Lor-7044-2024
dc.authorwosidSahin, Hasan/Aae-9283-2020
dc.authorwosidCruz-Hernández, Aldenamar/Mck-5752-2025
dc.authorwosidCruz-Hernandez, Aldenamar/Mck-5752-2025
dc.authorwosidCamacho-Perez, Enrique/Aas-5140-2021
dc.contributor.authorGomez-Vazquez, Armando
dc.contributor.authorTirink, Cem
dc.contributor.authorCruz-Tamayo, Alvar Alonzo
dc.contributor.authorCruz-Hernandez, Aldenamar
dc.contributor.authorCamacho-Perez, Enrique
dc.contributor.authorOkuyucu, Ibrahim Cihangir
dc.contributor.authorChay-Canul, Alfonso J.
dc.contributor.authorIDDzib Cauich, Dany Alejano/0000-0001-7961-2867
dc.contributor.authorIDCruz Tamayo, Alvar Alonzo/0000-0002-5509-3430
dc.contributor.authorIDCruz-Hernández, Aldenamar/0000-0003-0171-4729
dc.contributor.authorIDCamacho-Pérez, Enrique/0000-0002-2581-1921
dc.contributor.authorIDTirink, Cem/0000-0001-6902-5837
dc.contributor.authorIDSahin, Hasan Alp/0000-0002-7811-955X
dc.date.accessioned2025-12-11T01:39:09Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Gomez-Vazquez, Armando; Cruz-Hernandez, Aldenamar; Garcia-Herrera, Ricardo Alfonso; Chay-Canul, Alfonso J.] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Agr, Villahermosa 86280, Tabasco, Mexico; [Tirink, Cem] Igdir Univ, Fac Agr, Dept Anim Sci, TR-76000 Igdir, Turkiye; [Cruz-Tamayo, Alvar Alonzo] Univ Autonoma Campeche, Fac Ciencias Agr, Escarcega 24350, Campeche, Mexico; [Camacho-Perez, Enrique] Univ Autonoma Yucatan, Fac Ingn, Av Ind Contaminantes S-N, Merida 97302, Yucatan, Mexico; [Okuyucu, Ibrahim Cihangir; Gulboy, Omer] Ondokuz Mayis Univ, Dept Anim Sci, Fac Agr, TR-55139 Samsun, Turkiye; [Sahin, Hasan Alp] Ondokuz Mayis Univ, Res Inst Hemp, TR-55139 Samsun, Turkiye; [Dzib-Cauich, Dany Alejandro] Inst Tecnol Super Calkini, Tecnol Nacl Mexico, Ave Ah Canul, Calkini 24900, Campeche, Mexicoen_US
dc.descriptionDzib Cauich, Dany Alejano/0000-0001-7961-2867; Cruz Tamayo, Alvar Alonzo/0000-0002-5509-3430; Cruz-Hernández, Aldenamar/0000-0003-0171-4729; Camacho-Pérez, Enrique/0000-0002-2581-1921; Tirink, Cem/0000-0001-6902-5837; Sahin, Hasan Alp/0000-0002-7811-955X;en_US
dc.description.abstractAccurately estimating body weight is crucial for managing water buffalo health and optimizing feeding strategies. This study explored the effectiveness of machine learning models in predicting body weight based on body measurements. Principal component analysis was employed to reduce the dimensionality of the data and identify the most relevant features. Subsequently, Gradient Boosting and Random Forest algorithms were utilized to predict body weight using the reduced data set. The Gradient Boosting algorithm demonstrated superior performance compared to the Random Forest algorithm. These findings suggest that the combination of principal component analysis and Gradient Boosting offers a reliable and effective method for estimating body weight in water buffaloes. This approach holds promise for improving animal production and health management practices. Future research could focus on enhancing the applicability and generalizability of these models to diverse water buffalo populations across various geographical regions. This study aims to use advanced machine learning techniques supported by Principal Component Analysis (PCA) to estimate body weight (BW) in buffalos raised in southeastern Mexico and compare their performance. The first stage of the current study consists of body measurements and the process of determining the most informative variables using PCA, a dimension reduction method. This process reduces the data size by eliminating the complex structure of the model and provides a faster and more effective learning process. As a second stage, two separate prediction models were developed with Gradient Boosting and Random Forest algorithms, using the principal components obtained from the data set reduced by PCA. The performances of both models were compared using R-2, RMSE and MAE metrics, and showed that the Gradient Boosting model achieved a better prediction performance with a higher R-2 value and lower error rates than the Random Forest model. In conclusion, PCA-supported modeling applications can provide more reliable results, and the Gradient Boosting algorithm is superior to Random Forest in this context. The current study demonstrates the potential use of machine learning approaches in estimating body weight in water buffalos, and will support sustainable animal husbandry by contributing to decision making processes in the field of animal science.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/ani14020293
dc.identifier.issn2076-2615
dc.identifier.issue2en_US
dc.identifier.pmid38254463
dc.identifier.scopus2-s2.0-85183167221
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/ani14020293
dc.identifier.urihttps://hdl.handle.net/20.500.12712/45149
dc.identifier.volume14en_US
dc.identifier.wosWOS:001151758200001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAnimalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPrincipal Component Analysisen_US
dc.subjectGradient Boostingen_US
dc.subjectRandom Foresten_US
dc.subjectBuffaloen_US
dc.subjectBody Weighten_US
dc.titlePrediction of Body Weight by Using PCA-Supported Gradient Boosting and Random Forest Algorithms in Water Buffaloes (Bubalus Bubalis) Reared in South-Eastern Mexicoen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files