Publication:
Direct Nonoxidative Conversion of Methane to Hydrogen and Higher Hydrocarbons by Dielectric Barrier Discharge Plasma with Plasma Catalysis Promoters

dc.authorscopusid36781821900
dc.authorscopusid56599444600
dc.authorscopusid8600292400
dc.authorscopusid57207562203
dc.contributor.authorChiremba, E.
dc.contributor.authorZhang, K.
dc.contributor.authorKazak, C.
dc.contributor.authorAkay, G.
dc.date.accessioned2020-06-21T13:18:15Z
dc.date.available2020-06-21T13:18:15Z
dc.date.issued2017
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Chiremba] Elijah, Newcastle University, Newcastle, Tyne and Wear, United Kingdom; [Zhang] Kui, Newcastle University, Newcastle, Tyne and Wear, United Kingdom; [Kazak] Canan, Newcastle University, Newcastle, Tyne and Wear, United Kingdom, Physcics Department, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Akay] Galip, Newcastle University, Newcastle, Tyne and Wear, United Kingdom, Blacksea Advanced Technology Research and Application Centre (KITAM), Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractDirect nonoxidative conversion of methane to hydrogen and hydrocarbons was achieved at atmospheric pressure and 120°C using nonthermal plasma sustained by plasma catalysis promoters (PCPs). Reactors had two different electrode configurations. Methane conversion correlated well with the specific energy density (SED). Methane conversion was independent of plasma power, flow rate, electrode configuration, or the type of PCPs. Hydrogen selectivity (ca. 60%) was dependent significantly on PCP and electrode configuration. The ethane/ethylene molar ratio increased from 0 to 0.15 with increasing SED. When the SED value was below ca. 100 kJ/L, ethylene was the only C<inf>2</inf> hydrocarbon. These results are similar to the recently reported nonoxidative catalytic methane conversion at ca. 1000°C. Therefore, these results represent process intensification in methane conversion. PCPs underwent structural and chemical changes but their performances are not affected during an 80-h experimental period. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4418–4429, 2017. © 2017 American Institute of Chemical Engineersen_US
dc.identifier.doi10.1002/aic.15769
dc.identifier.endpage4429en_US
dc.identifier.issn0001-1541
dc.identifier.issn1547-5905
dc.identifier.issue10en_US
dc.identifier.scopus2-s2.0-85019468529
dc.identifier.scopusqualityQ2
dc.identifier.startpage4418en_US
dc.identifier.urihttps://doi.org/10.1002/aic.15769
dc.identifier.volume63en_US
dc.identifier.wosWOS:000409146600014
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Inc. cs-journals@wiley.comen_US
dc.relation.ispartofAIChE Journalen_US
dc.relation.journalAiche Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCatalysisen_US
dc.subjectFuelsen_US
dc.subjectHydrocarbon Processingen_US
dc.subjectPetroleumen_US
dc.subjectPlasmaen_US
dc.titleDirect Nonoxidative Conversion of Methane to Hydrogen and Higher Hydrocarbons by Dielectric Barrier Discharge Plasma with Plasma Catalysis Promotersen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files