Publication:
Mathematical Structure of Mosaic Disease Using Microbial Biostimulants via Caputo and Atangana-Baleanu Derivatives

dc.authorscopusid57217132593
dc.authorscopusid16303495600
dc.authorscopusid57211962934
dc.authorwosidKumar, Pushpendra/Aaa-1223-2021
dc.authorwosidAlmusawa, Hassan/Aah-2821-2021
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorAlmusawa, Hassan
dc.contributor.authorIDKumar, Pushpena/0000-0002-7755-2837
dc.contributor.authorIDAlmusawa, Hassan/0000-0001-5024-866X
dc.date.accessioned2025-12-11T01:13:45Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kumar, Pushpendra] Cent Univ Punjab, Sch Basic & Appl Sci, Dept Math & Stat, Bathinda 151001, Punjab, India; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Dept Math, TR-55200 Atakum, Samsun, Turkey; [Almusawa, Hassan] Jazan Univ, Dept Math, Coll Sci, Jazan 45142, Saudi Arabiaen_US
dc.descriptionKumar, Pushpena/0000-0002-7755-2837; Almusawa, Hassan/0000-0001-5024-866X;en_US
dc.description.abstractIn this research collection, we analysed two different fractional non-linear mathematical models of a well-known mosaic epidemic of plants, which is underlying by begomoviruses and is distributed to plants by whitefly. We included the role of natural microbial biostimulants which are used to increase plant performance and protects them against mosaic infection. Cause of the big expansion of the mosaic epidemic in various geographical areas, and its large privative economic and societal impacts, it is of major consequence to define dominant optimal control means of this disease. In this paper, we used Caputo (singular type kernel) and Atangana-Baleanu (Mittag-Leffler type kernel) fractional derivatives to define the structure of the proposed mosaic model. We performed some important existence and uniqueness analyses for both models by the applications of fixed point theory and the Picard-Lindelof technique. We derived the numerical solution of the Caputo fractional model by the application of the fourth-order Runge-Kutta method and the Atangana- Baleanu model by the Predictor-Corrector algorithm. A long-term discussion on the graphical interpretations of both models with different infection transmission rate and application proportion rate of MBs (microbial biostimulants) at different fractional-order values have established. We exemplified that under the case of the Mittag-Leffler kernel, the effects of different fractional-order values are much clear as compared to the singular type kernel. The main contribution of this paper is to study the dynamics of mosaic disease at different transmission rates and MBs application rates in the sense of two different kernel types.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.rinp.2021.104186
dc.identifier.issn2211-3797
dc.identifier.scopus2-s2.0-85104575291
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.rinp.2021.104186
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42170
dc.identifier.volume24en_US
dc.identifier.wosWOS:000649716900004
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofResults in Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMosaic Diseaseen_US
dc.subjectMicrobial Biostimulantsen_US
dc.subjectFractional Mathematical Modelen_US
dc.subjectCaputo Derivativeen_US
dc.subjectAtangana-Baleanu Derivativeen_US
dc.subjectRunge-Kutta Methoden_US
dc.subjectPredictor-Corrector Algorithmen_US
dc.subjectGraphical Simulationsen_US
dc.titleMathematical Structure of Mosaic Disease Using Microbial Biostimulants via Caputo and Atangana-Baleanu Derivativesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files