Publication:
CNN-LSTM Based Deep Learning Application on Jetson Nano: Estimating Electrical Energy Consumption for Future Smart Homes

dc.authorscopusid57210588035
dc.authorscopusid22433630600
dc.authorscopusid55893389200
dc.authorwosidGozuoglu, Abdulkadir/X-6027-2018
dc.contributor.authorGozuoglu, Abdulkadir
dc.contributor.authorOzgonenel, Okan
dc.contributor.authorGezegin, Cenk
dc.date.accessioned2025-12-11T00:38:05Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Gozuoglu, Abdulkadir] Tokat Gaziosmanpasa Univ, Elect & Energy Dept, Tokat, Turkiye; [Ozgonenel, Okan; Gezegin, Cenk] Ondokuz Mayis Univ, Elect & Elect Engn Dept, Samsun, Turkiyeen_US
dc.description.abstractSmart home applications have witnessed significant advancements, expanding beyond lighting control or remote monitoring to more sophisticated functionalities. Our study delves into pioneering an advanced energy management system tailored for forthcoming smart homes and grids. This system harnesses deep learning methodologies to predict consumer energy consumption. Leveraging a Wireless Fidelity (Wi-Fi) connection, we established an Internet of Things (IoT) network supported by Message Queuing Telemetry Transport (MQTT) for efficient data transfer. Our approach integrated the Jetson Nano Developer Kit for deep learning tasks, utilized Raspberry Pi as a home management server (HMS), and employed Espressif Systems' microcontrollers (ESP-01, NodeMCU, ESP32) to impart intelligence to household devices. Actual house measurements were collected and rigorously analyzed, demonstrating promising outcomes in deep learning, control, and monitoring applications. This management system's potential extends to empowering future smart homes and is a crucial component for demand-side energy management in forthcoming intelligent grids.en_US
dc.description.sponsorshipOMU BAP [MUH.1904.21.018]en_US
dc.description.sponsorshipThe authors acknowledge the financial support from OMU BAP (project number: PYO. MUH.1904.21.018) and express their gratitude for this assistance.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.iot.2024.101148
dc.identifier.issn2543-1536
dc.identifier.issn2542-6605
dc.identifier.scopus2-s2.0-85187110583
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.iot.2024.101148
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38083
dc.identifier.volume26en_US
dc.identifier.wosWOS:001240638100001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofInternet of Thingsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuture Smart Homesen_US
dc.subjectFuture Smart Gridsen_US
dc.subjectDeep Learningen_US
dc.subjectCNN-LSTM Methoden_US
dc.subjectHome Automationen_US
dc.subjectWi-Fien_US
dc.subjectESP-01en_US
dc.subjectNodeMCUen_US
dc.subjectESP32en_US
dc.subjectEnergy Consumption Estimationen_US
dc.subjectDemand-Side Managementen_US
dc.subjectHome Management Serveren_US
dc.titleCNN-LSTM Based Deep Learning Application on Jetson Nano: Estimating Electrical Energy Consumption for Future Smart Homesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files