Publication: CNN-LSTM Based Deep Learning Application on Jetson Nano: Estimating Electrical Energy Consumption for Future Smart Homes
| dc.authorscopusid | 57210588035 | |
| dc.authorscopusid | 22433630600 | |
| dc.authorscopusid | 55893389200 | |
| dc.authorwosid | Gozuoglu, Abdulkadir/X-6027-2018 | |
| dc.contributor.author | Gozuoglu, Abdulkadir | |
| dc.contributor.author | Ozgonenel, Okan | |
| dc.contributor.author | Gezegin, Cenk | |
| dc.date.accessioned | 2025-12-11T00:38:05Z | |
| dc.date.issued | 2024 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Gozuoglu, Abdulkadir] Tokat Gaziosmanpasa Univ, Elect & Energy Dept, Tokat, Turkiye; [Ozgonenel, Okan; Gezegin, Cenk] Ondokuz Mayis Univ, Elect & Elect Engn Dept, Samsun, Turkiye | en_US |
| dc.description.abstract | Smart home applications have witnessed significant advancements, expanding beyond lighting control or remote monitoring to more sophisticated functionalities. Our study delves into pioneering an advanced energy management system tailored for forthcoming smart homes and grids. This system harnesses deep learning methodologies to predict consumer energy consumption. Leveraging a Wireless Fidelity (Wi-Fi) connection, we established an Internet of Things (IoT) network supported by Message Queuing Telemetry Transport (MQTT) for efficient data transfer. Our approach integrated the Jetson Nano Developer Kit for deep learning tasks, utilized Raspberry Pi as a home management server (HMS), and employed Espressif Systems' microcontrollers (ESP-01, NodeMCU, ESP32) to impart intelligence to household devices. Actual house measurements were collected and rigorously analyzed, demonstrating promising outcomes in deep learning, control, and monitoring applications. This management system's potential extends to empowering future smart homes and is a crucial component for demand-side energy management in forthcoming intelligent grids. | en_US |
| dc.description.sponsorship | OMU BAP [MUH.1904.21.018] | en_US |
| dc.description.sponsorship | The authors acknowledge the financial support from OMU BAP (project number: PYO. MUH.1904.21.018) and express their gratitude for this assistance. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1016/j.iot.2024.101148 | |
| dc.identifier.issn | 2543-1536 | |
| dc.identifier.issn | 2542-6605 | |
| dc.identifier.scopus | 2-s2.0-85187110583 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.iot.2024.101148 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/38083 | |
| dc.identifier.volume | 26 | en_US |
| dc.identifier.wos | WOS:001240638100001 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Internet of Things | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Future Smart Homes | en_US |
| dc.subject | Future Smart Grids | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | CNN-LSTM Method | en_US |
| dc.subject | Home Automation | en_US |
| dc.subject | Wi-Fi | en_US |
| dc.subject | ESP-01 | en_US |
| dc.subject | NodeMCU | en_US |
| dc.subject | ESP32 | en_US |
| dc.subject | Energy Consumption Estimation | en_US |
| dc.subject | Demand-Side Management | en_US |
| dc.subject | Home Management Server | en_US |
| dc.title | CNN-LSTM Based Deep Learning Application on Jetson Nano: Estimating Electrical Energy Consumption for Future Smart Homes | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
