Basit öğe kaydını göster

dc.contributor.authorGürkanlı, A.Turan
dc.date.accessioned2020-06-21T10:43:52Z
dc.date.available2020-06-21T10:43:52Z
dc.date.issued1997
dc.identifier.issn1303-5991
dc.identifier.issn2618-6470
dc.identifier.urihttps://app.trdizin.gov.tr/publication/paper/detail/TlRRMU5UQXc=
dc.identifier.urihttps://hdl.handle.net/20.500.12712/9640
dc.description.abstractLet G be a locally compact Abelian group (nondiscrete and non compact) with dual group \widehat{G}. For 1 \leq P < \infty, A_p (G) denotes the vector space of all complex-valued functions in L1 (G) whose Fourier transforms \hat{f} belong to Lp\widehat(G). Research on the spaces A_p (G) was initiated by Warner [20] and Larsen, Liu and Wang [14]. Later several generalizations of these spaces to the weighled case was given by Gürkanlı [6], Feichtinger and Gürkanlı [4] and Fischer, Gürkanlı and Liu [5]. One of these generalization is the space Ap_{w,\omega}(G), [4]. Also the multipliers of A_p (G) were discussed in some papers such as [14], [1], [13], [3], [9] and proved that the space of multipliers of A_p (G) is the space of all bounded complex-valued regular Borel measures on G. In the present paper we discussed the multipliers of the Banach algebra Ap_{w,\omega}(G) and proved that under certain conditions for given any multiplier T of Ap_{w,\omega}(G) there exists a unique pseudo measure \sigma such that Tf \sigma * f for all f \in Ap_{w,\omega}(G).en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatematiken_US
dc.subjectİstatistik ve Olasılıken_US
dc.titleSome convolution algebras and their multipliersen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume46en_US
dc.identifier.issue1-2en_US
dc.identifier.startpage119en_US
dc.identifier.endpage134en_US
dc.relation.journalCommunications Series A1: Mathematics and Statisticsen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster