Show simple item record

dc.contributor.authorEkin, A.Bülent
dc.date.accessioned2020-06-21T10:25:50Z
dc.date.available2020-06-21T10:25:50Z
dc.date.issued1998
dc.identifier.issn1300-8692
dc.identifier.urihttps://app.trdizin.gov.tr/publication/paper/detail/TkRrMk56QXc=
dc.identifier.urihttps://hdl.handle.net/20.500.12712/7440
dc.description.abstractBu çalışmada bazı modüler formlar incelenip T) ve 6 fonksiyonları yardımıyla bir çok ayrışım özdeşliği türetilmiştir.en_US
dc.description.abstractThe theory of modular forms is one of the widest area of mathematics. It plays an essential role in Number Theory. In this study, we work out that Dedekind eta function, \eta a mock \theta function defined by a q-series convergent when q<1 and \eta_n,(n\in\Bbb{Z}) defined by the help of \eta are modular forms of half-integer weight on certain subgroups of SL_2(\Bbb{Z}). These functions appear in many identities of the partition theory. Some of them may be proved by a well-known theorem which will be stated in the text but, we don't present any of these proofs here. Therefore, for the use of this theorem we give complete identified sets of cusps of certain subgroups of SL_2(\Bbb{Z}) and the explicit formulas for the orders of these functions at various cusps.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSome modular formsen_US
dc.title.alternativeBazı modüler formlaren_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume-1en_US
dc.identifier.issue4en_US
dc.identifier.startpage97en_US
dc.identifier.endpage119en_US
dc.relation.journalAnadolu Üniversitesi Fen Fakültesi Dergisien_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record