• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • TR-Dizin İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • TR-Dizin İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Türkiye ' de enflasyonun ileri ve geri beslemeli yapay sinir ağlarının melez yaklaşımı ile öngörüsü

Tarih

2010

Yazar

Erilli, N.Alp
Eğrioğlu, Erol
Aladağ, Hakan.Ç
Uslu, Rezan.V

Üst veri

Tüm öğe kaydını göster

Özet

Enflasyon öngörülerinin elde edilmesi önemli bir ekonomik problemdir. Öngörülerin doğru bir şekilde elde edilmesi daha doğru kararlara neden olacaktır. Enflasyon öngörüsü için literatürde çeşitli zaman serileri teknikleri kullanılmıştır. Son yıllarda zaman serisi öngörü probleminde esnek modelleme yeteneği nedeniyle, Yapay Sinir Ağları (YSA) tercih edilmektedir. Yapay sinir ağları doğrusal veya eğrisel belirli bir model kalıbı, durağanlık ve normal dağılım gibi ön koşullara ihtiyaç duymadığından herhangi bir zaman serisine kolaylıkla uygulanabilmektedir. Bu çalışmada Tüketici Fiyat Endeksi (TUFE) için ileri ve geri beslemeli yapay sinir ağları yaklaşımı kullanılarak öngörüler elde edilmiştir. Çözümlemede kullanılan YSA modellerinin öngörülerinin girdi olarak kullanıldığı, YSA’ya dayalı yeni bir melez yaklaşım önerilmiştir.
 
Obtaining the inflation prediction is an important problem. Having this prediction accurately will lead to more accurate decisions. Various time series techniques have been used in the literature for inflation prediction. Recently, Artificial Neural Network (ANN) is being preferred in the time series prediction problem due to its flexible modeling capacity. Artificial neural network can be applied easily to any time series since it does not require prior conditions such as a linear or curved specific model pattern, stationary and normal distribution. In this study, the predictions have been obtained using the feed forward and recurrent artificial neural network for the Consumer Price Index (CPI). A new combined forecast has been proposed based on ANN in which the ANN model predictions employed in analysis were used as data.
 

Kaynak

Doğuş Üniversitesi Dergisi

Cilt

11

Sayı

1

Bağlantı

https://app.trdizin.gov.tr/publication/paper/detail/T1RjNU1UTXo=
https://hdl.handle.net/20.500.12712/7348

Koleksiyonlar

  • TR-Dizin İndeksli Yayınlar Koleksiyonu [4706]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.