dc.contributor.author | Aydin I. | |
dc.contributor.author | Turan Gürkanli A. | |
dc.date.accessioned | 2020-06-21T09:36:30Z | |
dc.date.available | 2020-06-21T09:36:30Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0017-095X | |
dc.identifier.uri | https://doi.org/10.3336/gm.47.1.14 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/4437 | |
dc.description.abstract | In the present paper a new family of Wiener amalgam spaces W(L P(X),L Q W) is defined, with local component which is a variable exponent Lebesgue space L P(X)(? n) and the global component is a weighted Lebesgue space L Q W(? n). We proceed to show that these Wiener amalgam spaces are Banach function spaces. We also present new Hölder-type inequalities and embeddings for these spaces. At the end of this paper we show that under some conditions the Hardy-Littlewood maximal function is not mapping the space W(L P(X),L Q W) into itself. | en_US |
dc.language.iso | eng | en_US |
dc.relation.isversionof | 10.3336/gm.47.1.14 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hardy-Littlewood maximal function | en_US |
dc.subject | Variable exponent Lebesgue space | en_US |
dc.subject | Wiener amalgam space | en_US |
dc.title | Weighted variable exponent amalgam spaces W(L P(X),L Q W) | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 47 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 165 | en_US |
dc.identifier.endpage | 174 | en_US |
dc.relation.journal | Glasnik Matematicki | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |