Show simple item record

dc.contributor.authorEryilmaz F.Y.
dc.contributor.authorEren S.
dc.date.accessioned2020-06-21T09:28:23Z
dc.date.available2020-06-21T09:28:23Z
dc.date.issued2012
dc.identifier.issn1311-8080
dc.identifier.urihttps://hdl.handle.net/20.500.12712/4300
dc.description.abstractLet R be a ring and M be a left R-module. M is called cofinitely weak Rad-supplemented if every cofinite submodule of M has a weak Rad-supplement in M. In this paper, we will define totally cofinitely weak Rad-supplemented modules. In general, the finite sum of totally cofinitely weak Rad-supplemented modules need not to be totally cofinitely weak Radsupplemented. However a module totally cofinitely weak Rad-supplemented if and only if it is the direct sum of a semisimple module and a totally cofinitely weak Rad-supplemented module. We will prove a module M is totally cofinitely weak Rad-supplemented if and only if M/K is totally cofinitely weak Rad-supplemented for a linearly compact submodule K of M. Similarly, a module M is totally cofinitely weak Rad-supplemented if and only if M/U is totally cofinitely weak Rad-supplemented for a uniserial submodule U of M. © 2012 Academic Publications, Ltd.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCofinite submoduleen_US
dc.subjectCofinitely weak rad-supplemented moduleen_US
dc.subjectTotally cofinitely weak rad-supplemented moduleen_US
dc.titleTotally cofinitely weak Rad-supplemented modulesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume80en_US
dc.identifier.issue5en_US
dc.identifier.startpage683en_US
dc.identifier.endpage692en_US
dc.relation.journalInternational Journal of Pure and Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record