dc.contributor.author | Eryilmaz F.Y. | |
dc.contributor.author | Eren S. | |
dc.date.accessioned | 2020-06-21T09:28:23Z | |
dc.date.available | 2020-06-21T09:28:23Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1311-8080 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/4300 | |
dc.description.abstract | Let R be a ring and M be a left R-module. M is called cofinitely weak Rad-supplemented if every cofinite submodule of M has a weak Rad-supplement in M. In this paper, we will define totally cofinitely weak Rad-supplemented modules. In general, the finite sum of totally cofinitely weak Rad-supplemented modules need not to be totally cofinitely weak Radsupplemented. However a module totally cofinitely weak Rad-supplemented if and only if it is the direct sum of a semisimple module and a totally cofinitely weak Rad-supplemented module. We will prove a module M is totally cofinitely weak Rad-supplemented if and only if M/K is totally cofinitely weak Rad-supplemented for a linearly compact submodule K of M. Similarly, a module M is totally cofinitely weak Rad-supplemented if and only if M/U is totally cofinitely weak Rad-supplemented for a uniserial submodule U of M. © 2012 Academic Publications, Ltd. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cofinite submodule | en_US |
dc.subject | Cofinitely weak rad-supplemented module | en_US |
dc.subject | Totally cofinitely weak rad-supplemented module | en_US |
dc.title | Totally cofinitely weak Rad-supplemented modules | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 80 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 683 | en_US |
dc.identifier.endpage | 692 | en_US |
dc.relation.journal | International Journal of Pure and Applied Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |