Show simple item record

dc.contributor.authorAkleylek S.
dc.contributor.authorCenk M.
dc.contributor.authorÖzbudak F.
dc.date.accessioned2020-06-21T09:27:28Z
dc.date.available2020-06-21T09:27:28Z
dc.date.issued2010
dc.identifier.isbn9.78905E+12
dc.identifier.issn1876-1100
dc.identifier.urihttps://doi.org/10.1007/978-90-481-9794-1_75
dc.identifier.urihttps://hdl.handle.net/20.500.12712/4063
dc.description25th International Symposium on Computer and Information Sciences, ISCIS 2010 -- 22 September 2010 through 24 September 2010 -- London -- 82255en_US
dc.description.abstractIn this paper, we give faster versions of Montgomery modular multiplication algorithm without pre-computational phase for GF(p) and GF(2m ) which can be considered as a generalization of [3], [4] and [5]. We propose sets of moduli different than [3], [4] and [5] which can be used in PKC applications. We show that one can obtain efficient Montgomery modular multiplication architecture in view of the number of AND gates and XOR gates by choosing proposed sets of moduli. We eliminate precomputational phase with proposed sets of moduli. These methods are easy to implement for hardware. © 2011 Springer Science+Business Media B.V.en_US
dc.language.isoengen_US
dc.relation.isversionof10.1007/978-90-481-9794-1_75en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectelliptic curve cryptographyen_US
dc.subjectMontgomery modular multiplicationen_US
dc.subjectpublic key cryptographyen_US
dc.subjectVLSI implementationen_US
dc.titleFaster Montgomery modular multiplication without pre-computational phase for some classes of finite fieldsen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume62 LNEEen_US
dc.identifier.startpage405en_US
dc.identifier.endpage408en_US
dc.relation.journalLecture Notes in Electrical Engineeringen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record