Show simple item record

dc.contributor.authorTürkpence D.
dc.contributor.authorŞaka I.
dc.contributor.authorGençten A.
dc.date.accessioned2020-06-21T09:27:24Z
dc.date.available2020-06-21T09:27:24Z
dc.date.issued2010
dc.identifier.issn1300-0101
dc.identifier.urihttps://doi.org/10.3906/fiz-1003-20
dc.identifier.urihttps://hdl.handle.net/20.500.12712/4040
dc.description.abstractProduct operator formalism is widely used for the analytical description of multi-dimensional and multiple-pulse NMR experiments for the weakly coupled spin systems having spin-1/2 and spin-1 nuclei. The INEPT NMR experiment is a polarization transfer experiment including J-coupling. In this study, the INEPT NMR experiment was analytically investigated by using product operator theory for weakly coupled ISn (14NDn)(I=1, S =1; n=1, 2, 3) spin systems. The obtained theoretical results represent the FID values of 14 ND n groups. In order to make Fourier transform of the obtained FID values, a Maple program is used and then simulated spectra of the INEPT experiment are obtained for 14 NDn groups. Then, the experimental suggestions are made for the INEPT NMR experiment of 14 NDn groups. Also, it is suggested that the INEPT NMR experiment of IS (I=1, S=1) spin system can be used in NMR quantum computing. © tÜbÏtak.en_US
dc.language.isoengen_US
dc.relation.isversionof10.3906/fiz-1003-20en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectINEPTen_US
dc.subjectNMRen_US
dc.subjectProduct operator formalismen_US
dc.subjectSpin-1en_US
dc.titleINEPT NMR Spectroscopy of 14NDn groups: Product operator theory and simulationen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume34en_US
dc.identifier.issue3en_US
dc.identifier.startpage139en_US
dc.identifier.endpage148en_US
dc.relation.journalTurkish Journal of Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record