Time frequency analysis and multipliers of the spaces M(p, q)(R d) and S(p, q)(Rd)
dc.contributor.author | Turan Gürkanli A. | |
dc.date.accessioned | 2020-06-21T09:23:19Z | |
dc.date.available | 2020-06-21T09:23:19Z | |
dc.date.issued | 2006 | |
dc.identifier.issn | 0023-608X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/3504 | |
dc.description.abstract | In the second section of this paper, in analogy to modulation spaces, we define the space M(p, q) (Rd) to be the subspace of tempered distributions f ? S? (Rd) such that the Gabor transform Vg (f) of f is in the Lorentz space L (p, q) (R2d), where the window function g is a rapidly decreasing function. We endow this space with a suitable norm and show that the M(p, q) (Rd) becomes a Banach space and is invariant under time-frequency shifts for 1 ? p, q ? ?. We also discuss the dual space of M(p, q) (Rd) and the multipliers from L1 (Rd) into M(p, q) (Rd). In the third section we intend to study the intersection space S (p, q) (Rd) = L1 (Rd) ? M (p, q) (Rd) for 1 < p < ?, 1 ? q ? ?. We endow it with the sum norm and show that S (p, q) (Rd) becomes a Banach convolution algebra. Further we prove that it is also a Segal algebra. In the last section we discuss the multipliers of S (p, q) (Rd) and M (p, q) (Rd). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Kyoto University | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Time frequency analysis and multipliers of the spaces M(p, q)(R d) and S(p, q)(Rd) | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 46 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 595 | en_US |
dc.identifier.endpage | 616 | en_US |
dc.relation.journal | Kyoto Journal of Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Scopus İndeksli Yayınlar Koleksiyonu [14046]
Scopus Indexed Publications Collection