Basit öğe kaydını göster

dc.contributor.authorTuran Gürkanli A.
dc.date.accessioned2020-06-21T09:23:19Z
dc.date.available2020-06-21T09:23:19Z
dc.date.issued2006
dc.identifier.issn0023-608X
dc.identifier.urihttps://hdl.handle.net/20.500.12712/3504
dc.description.abstractIn the second section of this paper, in analogy to modulation spaces, we define the space M(p, q) (Rd) to be the subspace of tempered distributions f ? S? (Rd) such that the Gabor transform Vg (f) of f is in the Lorentz space L (p, q) (R2d), where the window function g is a rapidly decreasing function. We endow this space with a suitable norm and show that the M(p, q) (Rd) becomes a Banach space and is invariant under time-frequency shifts for 1 ? p, q ? ?. We also discuss the dual space of M(p, q) (Rd) and the multipliers from L1 (Rd) into M(p, q) (Rd). In the third section we intend to study the intersection space S (p, q) (Rd) = L1 (Rd) ? M (p, q) (Rd) for 1 < p < ?, 1 ? q ? ?. We endow it with the sum norm and show that S (p, q) (Rd) becomes a Banach convolution algebra. Further we prove that it is also a Segal algebra. In the last section we discuss the multipliers of S (p, q) (Rd) and M (p, q) (Rd).en_US
dc.language.isoengen_US
dc.publisherKyoto Universityen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleTime frequency analysis and multipliers of the spaces M(p, q)(R d) and S(p, q)(Rd)en_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume46en_US
dc.identifier.issue3en_US
dc.identifier.startpage595en_US
dc.identifier.endpage616en_US
dc.relation.journalKyoto Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster