dc.contributor.author | Yüce S. | |
dc.contributor.author | Kuruoğlu N. | |
dc.date.accessioned | 2020-06-21T09:23:18Z | |
dc.date.available | 2020-06-21T09:23:18Z | |
dc.date.issued | 2006 | |
dc.identifier.issn | 1812-5654 | |
dc.identifier.uri | https://doi.org/10.3923/jas.2006.383.386 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/3495 | |
dc.description.abstract | In this study, we first compute the polar moment of inertia of orbit curves under planar Lorentzian motions and then give the following theorems for the Lorentzian circles: When endpoints of a line segment AB with length a +b move on Lorentzian circle (its total rotation angle is ?) with the polar moment of inertia T, a point X which is collinear with the points A and B draws a Lorentzian circle with the polar moment of inertia Tx. The difference between T and Tx is independent of the Lorentzian circles, that is, Tx - T = ?ab. If the endpoints of AB move on different Lorentzian circles with the polar moments of inertia TA and TB, respectively, then Tx = [aTB + bTA]/(a + b) - ?ab is obtained. © 2006 Asian Network for Scientific Information. | en_US |
dc.language.iso | eng | en_US |
dc.relation.isversionof | 10.3923/jas.2006.383.386 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Lorentzian circle | en_US |
dc.subject | Lorentzian motion | en_US |
dc.subject | Moment of inertia | en_US |
dc.subject | Trigonometry in Lorentzian geometry | en_US |
dc.title | On polar moments of inertia of Lorentzian circles | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 6 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 383 | en_US |
dc.identifier.endpage | 386 | en_US |
dc.relation.journal | Journal of Applied Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |