• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik Fakültesi
  • Bilgisyar Mühendisliği Bölümü
  • Makale Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik Fakültesi
  • Bilgisyar Mühendisliği Bölümü
  • Makale Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

IoT güvenliği için kullanılan makine öğrenimi ve derin öğrenme modelleri üzerine bir derleme

Thumbnail

Göster/Aç

Tam Metin / Full Text (711.2Kb)

Tarih

2021

Yazar

Satılmış, Hami
Akleylek, Sedat

Üst veri

Tüm öğe kaydını göster

Künye

Satılmış, H. & Akleylek, S. (2021). IoT güvenliği için kullanılan makine öğrenimi ve derin öğrenme modelleri üzerine bir derleme. Bilişim Teknolojileri Dergisi, 14 (4) , 457-481. Erişim adresi: https://dergipark.org.tr/tr/pub/gazibtd/issue/65617/976591

Özet

Nesnelerin internetini (internet of things - IoT) oluşturan cihazlar ve bu cihazları birbirine bağlayan ağlar hızlı bir şekilde yaygınlaşmaktadır ve evrim geçirmektedir. Buna paralel olarak, IoT cihazlarına ve ağlarına yönelik saldırılar da hız kesmeden artmaya devam etmektedir. Bu derleme çalışmasında, genel olarak IoT ağlarındaki anormallik tabanlı saldırıları tespit etmek ve azaltmak için önerilen, makine öğrenimi ve derin öğrenme modellerinden oluşan güncel yaklaşımlar özetlenmiştir. Önerilen yaklaşımlar hakkında kısa bilgiler verilmektedir ve bu yaklaşımların avantajlarından ve dezavantajlarından bahsedilmektedir. Bu çalışmanın ana hedefi olarak, önerilen yaklaşımlarda kullanılan makine öğrenimi ve derin öğrenme modelleri ile ilgili, üç araştırma sorusunun yanıtı aranmaktadır. Bu araştırma sorularından birincisi, “IoT güvenliğinde kullanılan makine öğrenimi ve derin öğrenme modelleri, hangi me triklerle değerlendirilmektedir? “, ikincisi, “IoT güvenliği açısından, makine öğrenimi ve derin öğrenme modellerinde hangi veri kümeleri kullanılmaktadır? “ ve üçüncüsü ise, “IoT güvenliğinde hangi makine öğrenimi ve derin öğrenme modelleri kullanılmaktadır ve bunların uygulama alanları nelerdir? “. Bu çalışmada son olarak, incelenen çalışmalardaki eksiklikler tespit edilmektedir. Böylece, IoT güvenliği ile ilgili gelecekteki çalışmalar için bir bakış açısı sağlanmaktadır.
 
Internet of things (IoT) devices and networks connecting these devices are rapidly spreading and evolving. In parallel, attacks against IoT devices and networks continue to increase unabated. In this review, current approaches, consisting of machine learning and deep learning models, which are recommended to detect and mitigate anomaly -based attacks in IoT networks in general, are summarized. Brief information about the proposed approaches is given, and the advantages and disadvantages of these approaches are mentioned. As the main objective of this paper, answers to three research questions about machine learning and deep learning models used in the proposed approaches are sought. The first of these research questions is, “With which metrics are machine learning and deep learning models used in IoT security evaluated? “, the second is, “In terms of IoT security, which datasets are used in machine learning and deep learning models? “ and the third is, “Which machine learning and deep learning models are used in IoT security and what are their application areas? “. Finally, deficiencies encountered in the studies are noted. Thus, a perspective is provided for future work on IoT security.
 

Kaynak

Bilişim Teknolojileri Dergisi

Cilt

14

Sayı

4

Bağlantı

https://hdl.handle.net/20.500.12712/33038

Koleksiyonlar

  • Makale Koleksiyonu [3]
  • TR-Dizin İndeksli Yayınlar Koleksiyonu [4706]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.