Basit öğe kaydını göster

dc.contributor.authorCetin K.
dc.contributor.authorAksoy S.
dc.contributor.authorIseri I.
dc.date.accessioned2020-06-21T09:05:27Z
dc.date.available2020-06-21T09:05:27Z
dc.date.issued2019
dc.identifier.isbn9781728139647
dc.identifier.urihttps://doi.org/10.1109/UBMK.2019.8907015
dc.identifier.urihttps://hdl.handle.net/20.500.12712/2323
dc.description4th International Conference on Computer Science and Engineering, UBMK 2019 -- 11 September 2019 through 15 September 2019 -- -- 154916en_US
dc.description.abstractIn this study, a steel price forcasting model has been developed by using the Long Short-Term Memory Network Model (LSTM) which is a customized model of recurrent neural network (RNN) architecture. The 10-years stock closing prices of the 50 largest iron and steel companies traded in the world stock exchanges and 10-years data of the scrap metal price obtained from the London metal exchange (LME) on the same day and dates combined as time series for using model training and testing stages. As a result of the forcasting made with the UKDHA model, which is designed to have 1 lstm, 7 dense layers, the best forcasting result was obtained from the forward 5-day frocasting model with the correlation coefficient R =3D 0.8559, MSE value 0.0026 and MAE value 0.0383. © 2019 IEEE.en_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/UBMK.2019.8907015en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectForecastingen_US
dc.subjectLong Short Term Memory Networken_US
dc.subjectMachine Learningen_US
dc.subjectStock Priceen_US
dc.subjectTime Seriesen_US
dc.titleSteel Price Forcasting Using Long Short-Term Memory Network Modelen_US
dc.title.alternativeUzun Kisa-Donem Hafizali Ag Modeli Kullanilarak Qelik Fiyati Tahminlemesien_US
dc.typeconferenceObjecten_US
dc.contributor.departmentOMÜen_US
dc.identifier.startpage612en_US
dc.identifier.endpage617en_US
dc.relation.journalUBMK 2019 - Proceedings, 4th International Conference on Computer Science and Engineeringen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster