• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Leaf area modeling of bell pepper (Capsicum annuum L.) grown under different stress conditions by soft computing approaches

Date

2020

Author

Cemek B.
Ünlükara A.
Kurunç A.
Küçüktopcu E.

Metadata

Show full item record

Abstract

Some leaf area (LA) estimation models have been developed for different plants under optimum conditions, but to date, none has been developed to model for those grown under stress conditions. In this study, LA of bell pepper grown under different levels of irrigation water salinity (IWS) and irrigation regimes (IR) were estimated by means of comparing different procedures including a simple model derived from ellipse area (EM), parabolic model (PM), geometric model (GM), multiple linear regression analysis (MLR), and artificial neural networks (ANN). To this end, two experiments were carried out under greenhouse conditions. First, the LA of bell peppers grown under five IWS levels were identified. In the second experiment, LA was determined under four different IR. Besides the general models elicited from EM, PM, GM, MLR, and ANN for each stress condition, prediction models of the bell peppers for each treatment under both stress conditions also were validated. Performance of the models also were evaluated using root mean square errors (RMSE), mean absolute errors (MAE), coefficient of determination (R2) and a Taylor diagram, which illustrates the accuracy of the models in a concise statistical analysis of how well the correlation (r) and standard deviation (SD) patterns match. Based on these results, the ANN model produced more reliable LA estimations compared to MLR, EM, PM, and GM. The R2, RMSE and MAE values were ranged 0.96–0.99, 1.05–2.99 cm2, and 0.78–1.12 cm2 in all ANN models. Overall, the ANN models are a valuable tool to investigate and understand the estimation of the LA of the bell peppers grown under different levels of IWS and IR. © 2020 Elsevier B.V.

Source

Computers and Electronics in Agriculture

Volume

174

URI

https://doi.org/10.1016/j.compag.2020.105514
https://hdl.handle.net/20.500.12712/2192

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.