dc.contributor.author | Sagir, B | |
dc.date.accessioned | 2020-06-21T15:43:59Z | |
dc.date.available | 2020-06-21T15:43:59Z | |
dc.date.issued | 2003 | |
dc.identifier.issn | 1027-5487 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/21753 | |
dc.description | WOS: 000186878800009 | en_US |
dc.description.abstract | In this paper we define a normed space A(p)(q) (G, A) and prove some properties of this space. hi particular, we show that the space LV (G, A)circle times(Linfinity(G, A)) L-II (G, A) is isometricall isomorphic to the space A(q)(p) (G, A) and the space of multipliers from L-p (G, A) to L-q' (G, A*) is isometrically isomorphic to the dual of the space A(p)(q) (G, A) if G satisfies a property P-p(q). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Mathematical Soc Rep China | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | vector valued L-P (G, A) spaces | en_US |
dc.subject | multipliers | en_US |
dc.subject | tensor products | en_US |
dc.title | Multipliers and tensor products of vector valued L-P (G, A) spaces | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 7 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 493 | en_US |
dc.identifier.endpage | 501 | en_US |
dc.relation.journal | Taiwanese Journal of Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |