Basit öğe kaydını göster

dc.contributor.authorKuruoglu, N
dc.contributor.authorYuce, S
dc.date.accessioned2020-06-21T15:43:28Z
dc.date.available2020-06-21T15:43:28Z
dc.date.issued2004
dc.identifier.issn0011-4642
dc.identifier.issn1572-9141
dc.identifier.urihttps://doi.org/10.1023/B:CMAJ.0000042372.51882.a6
dc.identifier.urihttps://hdl.handle.net/20.500.12712/21633
dc.descriptionWOS: 000222816900006en_US
dc.description.abstractW. Blaschke and H. R. Muller [4, p. 142] have given the following theorem as a generalization of the classic Holditch Theorem: Let E/E' be a I-parameter closed planar Euclidean motion with the rotation number v and the period T. Under the motion E/E', let two points A = (0, 0), B = (a + b, 0) is an element of E trace the curves k(A), k(B) subset of E' and let F-A, F-B be their orbit areas, respectively. If F-X is the orbit area of the orbit curve k of the point X = (a, 0) which is collinear with points A and B then F-X = [aF(B) + bF(A)]/ a+b - pivab. In this paper, under the 1-parameter closed planar homothetic motion with the homothetic scale h = h(t), the generalization given above by W. Blaschke and H. R. Muller is expressed and F-X = [aF(B) + bF(A)]/a+b - h(2) (t(0)) pivab, is obtained, where There Existst(0) is an element of [0, T].en_US
dc.language.isoengen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.isversionof10.1023/B:CMAJ.0000042372.51882.a6en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHolditch theoremen_US
dc.subjecthomothetic motionen_US
dc.subjectSteiner formulaen_US
dc.titleThe generalized Holditch theorem for the homothetic motions on the planar kinematicsen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume54en_US
dc.identifier.issue2en_US
dc.identifier.startpage337en_US
dc.identifier.endpage340en_US
dc.relation.journalCzechoslovak Mathematical Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster