• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational intelligence methods for identifying voltage sag in smart grid

Tarih

2017

Yazar

Yalcin T.
Ozdemir M.

Üst veri

Tüm öğe kaydını göster

Özet

In recent years pattern recognition of power quality (PQ) disturbances in smart grids has developed into crucial topic for system equipments and end-users. Undoubtedly analyzing the PQ disturbances develop and maintain smart grids effectiveness. Voltage sags are the most common events that affect power quality. These faults are also the most costly. This paper represents performance comparisons of different computer intelligence methods for voltage sag identification. PQube Analyzer which is installed in Ondokuz Mayis University Computer Laboratory for collecting real time disturbances data for each three phases in order to test for proposed algorithms. Firstly, we used Hilbert Huang Transform to genarate Instantaneous Amplitude (IA) feature signal. Then Characteristic features are attained from IA. The 4 features, mean, standard deviation, skewness, kurtosis of IA are calculated. Support Vector Machines (SVMs) and C4.5 Decision Tree methods are conducted for classification of the disturbance. Secondly we used Fishers Discriminant Ratio for selecting statistical features such as mean, standard deviation, skewness and kurtosis of the normal and voltage sag signals for this part K Means Clustering Method were performed for classification of the disturbance. Consecuently, SVMs, C4.5 Decision Tree and K Means Clustering Methods were performed also their achievements were matched for error rates and CPU timing. © 2017 ASTES Publishers. All rights reserved.

Kaynak

Advances in Science, Technology and Engineering Systems

Cilt

2

Sayı

3

Bağlantı

https://doi.org/10.25046/aj020353
https://hdl.handle.net/20.500.12712/2124

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.