dc.contributor.author | Duyar, C. | |
dc.contributor.author | Gurkanli, A. T. | |
dc.date.accessioned | 2020-06-21T15:24:37Z | |
dc.date.available | 2020-06-21T15:24:37Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 1300-0098 | |
dc.identifier.issn | 1303-6149 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/20280 | |
dc.description | WOS: 000254995200006 | en_US |
dc.description.abstract | Quek and Yap defined a relative completion A for a linear subspace A of L-p(G), 1 <= p < infinity; and proved that there is an isometric isomorphism, between HOML1(G),(L-1(G), A) and <(A)over tilde>, where Hom(L1(G))(L-1(G),A) is the space of the module homomorphisms (or multipliers) from L-1(G) to A. In the present, we defined a relative completion for a linear subspace (A) over tilde of L-w(p)(G) where w is a Beurling's weighted function and LP.(G) is the weighted LP(G) space, ([14]). Also, we proved that there is an algeabric isomorphism and homeomorphism, between Hom(Lw1(G))(L-w(1)(G), A) and (A) over tilde. At the end of this work we gave some applications and examples. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Scientific Technical Research Council Turkey-Tubitak | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | module homomorphism (or multiplier) | en_US |
dc.subject | relative completion | en_US |
dc.subject | essential module | en_US |
dc.subject | weighted L-p(G) space. 1991 AMS subject classification codes 43 | en_US |
dc.title | Multipliers and the relative completion in L-w(p)(G) | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 31 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 181 | en_US |
dc.identifier.endpage | 191 | en_US |
dc.relation.journal | Turkish Journal of Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |