Basit öğe kaydını göster

dc.contributor.authorAydin, Serap
dc.contributor.authorSaraoglu, Hamdi Melih
dc.contributor.authorKara, Sadik
dc.date.accessioned2020-06-21T14:53:46Z
dc.date.available2020-06-21T14:53:46Z
dc.date.issued2009
dc.identifier.issn0090-6964
dc.identifier.issn1573-9686
dc.identifier.urihttps://doi.org/10.1007/s10439-009-9795-x
dc.identifier.urihttps://hdl.handle.net/20.500.12712/18319
dc.descriptionAYDIN, SERAP/0000-0002-4026-0750; KARA, SADIK/0000-0001-6063-6455en_US
dc.descriptionWOS: 000272014900018en_US
dc.descriptionPubMed: 19757057en_US
dc.description.abstractIn this study, normal EEG series recorded from healthy volunteers and epileptic EEG series recorded from patients within and without seizure are classified by using Multilayer Neural Network (MLNN) architectures with respect to several time domain entropy measures such as Shannon Entropy (ShanEn), Log Energy Entropy (LogEn), and Sample Entropy (Sampen). In tests, the MLNN is performed with several numbers of neurons for both one hidden layer and two hidden layers. The results show that segments in seizure have significantly lower entropy values than normal EEG series. This result indicates an important increase of EEG regularity in epilepsy patients. The LogEn approach, which has not been experienced in EEG classification yet, provides the most reliable features into the EEG classification with very low absolute error as 0.01. In particular, the MLNN can be proposed to distinguish the seizure activity from the seizure-free epileptic series where the LogEn values are considered as signal features that characterize the degree of EEG complexity. The highest classification accuracy is obtained for one hidden layer architecture.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s10439-009-9795-xen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEEG classificationen_US
dc.subjectLog Energy Entropyen_US
dc.subjectNeural networken_US
dc.subjectSeizureen_US
dc.titleLog Energy Entropy-Based EEG Classification with Multilayer Neural Networks in Seizureen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume37en_US
dc.identifier.issue12en_US
dc.identifier.startpage2626en_US
dc.identifier.endpage2630en_US
dc.relation.journalAnnals of Biomedical Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster