EPR Study of VO2+ Doped Diammonium Tricadmium Tetrakis (Sulfate) Pentahydrate [(NH4)(2)Cd-3(SO4)(4)center dot 5H(2)O] Single Crystals
Özet
Electron paramagnetic resonance (EPR) studies are carried out on vanadyl (VO2+) ions in diammonium tricadmium tetrakis (sulfate) pentahydrate single crystals at room temperature. The EPR spectra of a single crystal exhibit resonance signals characteristic to VO2+ ions. The analysis of EPR spectra indicates that the VO2+ ions in single crystals show two magnetically inequivalent VO2+ sites in distinct orientations occupying substitutional positions in the lattice and showing very high angular dependence. They form in octahedral coordination with tetragonal compression with C-4v symmetry. The spin Hamiltonian parameters are determined, and these parameters have been used to estimate the bonding coefficients of the VO2+ ion in a diammonium tricadmium tetrakis (sulfate) pentahydrate lattice. The parallel and perpendicular components of axially symmetric g and hyperfine (A) tensors are evaluated and the results are discussed and compared with previous reports.