The Effect of "Minimally Invasive Transfer of Angiosomes" on Vascularization of Prefabricated/Prelaminated Tissues
Özet
Prefabrication and prelamination are experimental and clinical applications of reconstructive surgery and inspired the vascularization challenge of engineered tissues. The purpose of this study is to test the efficiency of "minimally invasive transfer of angiosomes" to enhance the vascularization of the final construct during prefabrication and prelamination. Fifteen rabbits were used for this study. Three of the animals were used in a pilot study to develop the protocol. During the study, thoracodorsal and lateral thoracic vascular pedicles on each side constituted 4 study groups. The pedicles were prepared to simulate prelamination with and without transfer of angiosomes, and prefabrication with and without transfer of angiosomes. In all of the groups, a 10 x 15 mm auricular cartilage graft was used as the construct to be vascularized. After 2 weeks, vascularization of the grafts was evaluated by means of microangiography and histology. Results indicate that both prelamination and prefabrication with transfer of angiosomes displayed better vascularization, both qualitatively and quantitatively. However, prelamination with transfer of angiosomes group displayed distinct statistical superiority. The results suggest that minimally invasive transfer of angiosomes coupled with the procedure significantly increases the induction of angiogenesis during prelamination and prefabrication.