dc.contributor.author | Er, Noyan | |
dc.contributor.author | Lopez-Permouth, Sergio | |
dc.contributor.author | Sokmez, Nurhan | |
dc.date.accessioned | 2020-06-21T14:40:37Z | |
dc.date.available | 2020-06-21T14:40:37Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0021-8693 | |
dc.identifier.issn | 1090-266X | |
dc.identifier.uri | https://doi.org/10.1016/j.jalgebra.2010.10.038 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/17282 | |
dc.description | Er, Noyan/0000-0002-9225-3587; Lopez-Permouth, Sergio/0000-0002-7376-2167 | en_US |
dc.description | WOS: 000287676000023 | en_US |
dc.description.abstract | In a recent paper, Alahmadi. Alkan and Lopez-Permouth defined a module M to be poor if M is injective relative only to semisimple modules, and a ring to have no right middle class if every right module is poor or injective. We prove that every ring has a poor module, and characterize rings with semisimple poor modules. Next, a ring with no right middle class is proved to be the ring direct sum of a semisimple Artinian ring and a ring T which is either zero or of one of the following types: (i) Morita equivalent to a right PCI-domain, (ii) an indecomposable right SI-ring which is either right Artinian or a right V-ring, and such that soc(T-T) is homogeneous and essential in T-T and T has a unique simple singular right module, or (iii) an indecomposable right Artinian ring with homogeneous right socle coinciding with the Jacobson radical and the right singular ideal, and with unique non-injective simple right module. In case (iii) either T-T is poor or T is a QF-ring with J(T)(2) = 0. Converses of these cases are discussed. It is shown, in particular, that a QF-ring R with J(R)(2) = 0 and homogeneous right socle has no middle class. (C) 2010 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.isversionof | 10.1016/j.jalgebra.2010.10.038 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Injective module | en_US |
dc.subject | Poor module | en_US |
dc.subject | Injectivity domain | en_US |
dc.subject | V-, QI-, SI-, PCI-, QF-ring | en_US |
dc.title | Rings whose modules have maximal or minimal injectivity domains | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 330 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 404 | en_US |
dc.identifier.endpage | 417 | en_US |
dc.relation.journal | Journal of Algebra | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |