dc.contributor.author | Gun, A. | |
dc.contributor.author | Gencten, A. | |
dc.date.accessioned | 2020-06-21T14:30:08Z | |
dc.date.available | 2020-06-21T14:30:08Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0219-7499 | |
dc.identifier.uri | https://doi.org/10.1142/S0219749911008313 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/16984 | |
dc.description | WOS: 000297939700006 | en_US |
dc.description.abstract | In quantum information processing, spin-3/2 electron or nuclear spin states are known as two-qubit states. For SI (S = 3/2; I = 1/2) spin system, there are eight three-qubit states. In this study, first, three-qubit CNOT logic gates are obtained. Then three-qubit entangled states are obtained by using the matrix representation of Hadamard and three-qubit CNOT logic gates. By considering single (31)P@C(60) molecule as SI (S = 3/2; I = 1/2) spin system, three-qubit entangled states are also obtained using the magnetic resonance pulse sequences of Hadamard and CNOT logic gates. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.isversionof | 10.1142/S0219749911008313 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Three-qubit states | en_US |
dc.subject | three-qubit CNOT | en_US |
dc.subject | quantum entanglement | en_US |
dc.subject | endohedral fullerenes | en_US |
dc.subject | magnetic resonance selective pulses | en_US |
dc.title | Three-Qubit Quantum Entanglement For Si (S = 3/2, I = 1/2) Spin System | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 9 | en_US |
dc.identifier.issue | 07.Aug | en_US |
dc.identifier.startpage | 1635 | en_US |
dc.identifier.endpage | 1642 | en_US |
dc.relation.journal | International Journal of Quantum Information | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |