Basit öğe kaydını göster

dc.contributor.authorOzgonenel, Okan
dc.contributor.authorThomas, David W. P.
dc.date.accessioned2020-06-21T14:28:52Z
dc.date.available2020-06-21T14:28:52Z
dc.date.issued2012
dc.identifier.issn1300-0632
dc.identifier.issn1303-6203
dc.identifier.urihttps://doi.org/10.3906/elk-1012-1
dc.identifier.urihttps://hdl.handle.net/20.500.12712/16818
dc.descriptionWOS: 000303035300005en_US
dc.description.abstractFor accurate and efficient use of wind power, it is important to know the statistical characteristics, availability, diurnal variation, and prediction of wind speed. Prediction of wind power permits the scheduling of the connection or the disconnection of wind turbines to achieve optimal operating costs. In this paper, a simple and accurate method for predicting wind speed based on weather-sensitive data is presented. The proposed wind speed prediction system is cost-effective and only needs wind speed data at 40 in and weather data to forecast wind speeds at 50 m and 60 m for the current and next months. Hellman coefficients are first estimated by using a feed-forward backpropagation neural network and wind speeds at different heights are predicted. The autoregressive moving average algorithm is used for forecasting the short-term wind speed and is compared to in situ measurements. The predicted results are then compared to a powerful estimation algorithm known as the Mycielski algorithm.en_US
dc.description.sponsorshipOndokuz Mayis UniversityOndokuz Mayis University [OMU-BAP REK.1906.09.003]; [TUBITAK-2219]en_US
dc.description.sponsorshipThis work was supported by TUBITAK-2219 (a postdoctoral study at The University of Nottingham, UK). The authors also gratefully acknowledge the administrative bodies of Ondokuz Mayis University for supporting Project OMU-BAP REK.1906.09.003.en_US
dc.language.isoengen_US
dc.publisherTubitak Scientific & Technical Research Council Turkeyen_US
dc.relation.isversionof10.3906/elk-1012-1en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectWind speed/power forecastingen_US
dc.subjectHellman equationen_US
dc.subjectautoregressive moving average algorithmen_US
dc.subjectMycielskien_US
dc.subjectartificial neural networken_US
dc.titleShort-term wind speed estimation based on weather dataen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume20en_US
dc.identifier.issue3en_US
dc.identifier.startpage335en_US
dc.identifier.endpage346en_US
dc.relation.journalTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster