• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new linear & nonlinear artificial neural network model for time series forecasting

Tarih

2013

Yazar

Yolcu, Ufuk
Egrioglu, Erol
Aladag, Cagdas H.

Üst veri

Tüm öğe kaydını göster

Özet

Artificial neural network approach is a well-known method that is a useful tool for time series forecasting. Since real life time series can generally contain both linear and nonlinear components, hybrid approaches which can model both these two components have also been proposed in the literature. The hybrid approaches suggested in the literature generally have two phases. In the first phase, linear component of time series is modeled with a linear model. Then, nonlinear component is modeled by utilizing a nonlinear model in the second phase. In two-phase methods, it is assumed that time series has only a linear structure in the first phase. Also, it is assumed that time series has only a nonlinear structure in the second phase. Therefore, this causes model specification error. In order to overcome this problem, a novel neural network model, which consists of both linear and nonlinear structures, is proposed in this study. The proposed model considers that time series has both linear and nonlinear components. Multiplicative and Mc Culloch-Pitts neuron structures are employed for nonlinear and linear parts of the proposed model, respectively. In addition, the modified particle swarm optimization method is used to train the proposed neural network model. In order to show the performance of the proposed approach, it is applied to three real life time series and obtained results are compared to those obtained from other approaches available in the literature. It is observed that the proposed model gives the best forecasts for these three time series. (C) 2012 Elsevier B.V. All rights reserved.

Kaynak

Decision Support Systems

Cilt

54

Sayı

3

Bağlantı

https://doi.org/10.1016/j.dss.2012.12.006
https://hdl.handle.net/20.500.12712/16005

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.