Basit öğe kaydını göster

dc.contributor.authorEgrioglu, Erol
dc.contributor.authorAladag, Cagdas Hakan
dc.contributor.authorYolcu, Ufuk
dc.date.accessioned2020-06-21T14:06:44Z
dc.date.available2020-06-21T14:06:44Z
dc.date.issued2013
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2012.05.040
dc.identifier.urihttps://hdl.handle.net/20.500.12712/15993
dc.descriptionAladag, Cagdas Hakan/0000-0002-3953-7601; Egrioglu, Erol/0000-0003-4301-4149en_US
dc.descriptionWOS: 000311133600004en_US
dc.description.abstractIn recent years, time series forecasting studies in which fuzzy time series approach is utilized have got more attentions. Various soft computing techniques such as fuzzy clustering, artificial neural networks and genetic algorithms have been used in fuzzy time series method to improve the method. While fuzzy clustering and genetic algorithms are being used for fuzzification, artificial neural networks method is being preferred for using in defining fuzzy relationships. In this study, a hybrid fuzzy time series approach is proposed to reach more accurate forecasts. In the proposed hybrid approach, fuzzy c-means clustering method and artificial neural networks are employed for fuzzification and defining fuzzy relationships, respectively. The enrollment data of University of Alabama is forecasted by using both the proposed method and the other fuzzy time series approaches. As a result of comparison, it is seen that the most accurate forecasts are obtained when the proposed hybrid fuzzy time series approach is used. (C) 2012 Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.isversionof10.1016/j.eswa.2012.05.040en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectDefuzzificationen_US
dc.subjectForecasten_US
dc.subjectFuzzificationen_US
dc.subjectFuzzy c-meansen_US
dc.subjectFuzzy time seriesen_US
dc.titleFuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networksen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume40en_US
dc.identifier.issue3en_US
dc.identifier.startpage854en_US
dc.identifier.endpage857en_US
dc.relation.journalExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster