• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reviewing and designing pre-processing units for RBF networks: initial structure identification and coarse-tuning of free parameters

Tarih

2013

Yazar

Kayhan, Gokhan
Ozdemir, Ali Ekber
Eminoglu, Ilyas

Üst veri

Tüm öğe kaydını göster

Özet

This paper reviews some frequently used methods to initialize an radial basis function (RBF) network and presents systematic design procedures for pre-processing unit(s) to initialize RBF network from available input-output data sets. The pre-processing units are computationally hybrid two-step training algorithms that can be named as (1) construction of initial structure and (2) coarse-tuning of free parameters. The first step, the number, and the locations of the initial centers of RBF network can be determined. Thus, an orthogonal least squares algorithm and a modified counter propagation network can be employed for this purpose. In the second step, a coarse-tuning of free parameters is achieved by using clustering procedures. Thus, the Gustafson-Kessel and the fuzzy C-means clustering methods are evaluated for the coarse-tuning. The first two-step behaves like a pre-processing unit for the last stage (or fine-tuning stage-a gradient descent algorithm). The initialization ability of the proposed four pre-processing units (modular combination of the existing methods) is compared with three non-linear benchmarks in terms of root mean square errors. Finally, the proposed hybrid pre-processing units may initialize a fairly accurate, IF-THEN-wise readable initial model automatically and efficiently with a minimum user inference.

Kaynak

Neural Computing & Applications

Cilt

22

Sayı

07.Aug

Bağlantı

https://doi.org/10.1007/s00521-012-1053-8
https://hdl.handle.net/20.500.12712/15826

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.