Show simple item record

dc.contributor.authorCemek, Bilal
dc.contributor.authorRahman, Shafiqur
dc.contributor.authorRahman, Atikur
dc.date.accessioned2020-06-21T14:04:11Z
dc.date.available2020-06-21T14:04:11Z
dc.date.issued2013
dc.identifier.issn1582-9596
dc.identifier.issn1843-3707
dc.identifier.urihttps://hdl.handle.net/20.500.12712/15554
dc.descriptionWOS: 000330574200012en_US
dc.description.abstractNutrient runoff is an environmental concern. There is a need for a robust method of predicting nutrient concentrations in runoff from feedlots to facilitate management practices. To investigate the feasibility of using multiple linear regression (MLR) and artificial neural network (ANN) in predicting nutrients in runoff, simple water quality paramters (e.g., pH and EC) of runoff from a feedlot in North Dakota, USA, were used to train an ANN. Both models accurately predicted potassium concentration based on inputs pH and electrical conductivity (EC). The ANN approach, however, used in this study gave a better prediction than multiple linear regression models. It may be concluded that ANN may be a useful tool for predicting nutrients concentration in runoff using pH and EC, when expensive and time-consuming analytical data are not available, and this information may be used for implementing measures to minimize environmental concerns.en_US
dc.language.isoengen_US
dc.publisherGh Asachi Technical Univ Iasien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural network (ANN)en_US
dc.subjectECen_US
dc.subjectfeedlot runoffen_US
dc.subjectmultiple linear regression (MLR)en_US
dc.subjectpHen_US
dc.titleArtificial Neural Network For Predicting Nutrients Concentration in Runoff From Beef Cattle Feedloten_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume12en_US
dc.identifier.issue12en_US
dc.identifier.startpage2385en_US
dc.identifier.endpage2396en_US
dc.relation.journalEnvironmental Engineering and Management Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record