Show simple item record

dc.contributor.authorBurgaz, Engin
dc.contributor.authorYazici, Mehmet
dc.contributor.authorKapusuz, Murat
dc.contributor.authorAlisir, Sevim Hamamci
dc.contributor.authorOzcan, Hakan
dc.date.accessioned2020-06-21T13:58:06Z
dc.date.available2020-06-21T13:58:06Z
dc.date.issued2014
dc.identifier.issn0040-6031
dc.identifier.issn1872-762X
dc.identifier.urihttps://doi.org/10.1016/j.tca.2013.10.032
dc.identifier.urihttps://hdl.handle.net/20.500.12712/15325
dc.descriptionKapusuz, Murat/0000-0002-2243-8551; Hakan, OZCAN/0000-0002-7848-3650en_US
dc.descriptionWOS: 000329889500021en_US
dc.description.abstractThe artificial neural network (ANN) technique with a feed-forward back propagation algorithm was used to examine the effect of clay composition and temperature on thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites. Based on dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) experiments, values of decomposition temperature, char yield, enthalpy of melting, storage modulus (E') and tan delta were successfully calculated by well-trained ANNs. The simulated data is in very good agreement with the experimental data. ANN results confirm that thermal stability of PEO nanocomposites increases with the decrease of enthalpy of melting and relative crystallinity, and there is a directly proportional relationship between the modulus (stiffness) and thermal stability. The ANN technique is confirmed to be a useful mathematical tool in the thermal analysis of polymer/clay nanocomposites. (C) 2013 Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipOndokuz Mayis UniversityOndokuz Mayis University [PYO.MUH.1901.10.007]en_US
dc.description.sponsorshipFunding for this work was provided by Ondokuz Mayis University under Grant No. PYO.MUH.1901.10.007. Use of facilities at the Middle East Technical University Central Laboratory and Koc University Surface Science and Technology Center is acknowledged. Authors thank Dr. M. Bans Yagci of Koc University for his help on SEM experiments.en_US
dc.language.isoengen_US
dc.publisherElsevier Science Bven_US
dc.relation.isversionof10.1016/j.tca.2013.10.032en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThermomechanical propertiesen_US
dc.subjectThermal stabilityen_US
dc.subjectCrystallinityen_US
dc.subjectNanocompositesen_US
dc.subjectPoly(ethylene oxide) (PEO)en_US
dc.subjectNanoclayen_US
dc.titlePrediction of thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites with artificial neural networksen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume575en_US
dc.identifier.startpage159en_US
dc.identifier.endpage166en_US
dc.relation.journalThermochimica Actaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record