Basit öğe kaydını göster

dc.contributor.authorAbbas, Syed
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorMomani, Shaher
dc.date.accessioned2020-06-21T13:56:50Z
dc.date.available2020-06-21T13:56:50Z
dc.date.issued2014
dc.identifier.issn0165-1684
dc.identifier.issn1879-2677
dc.identifier.urihttps://doi.org/10.1016/j.sigpro.2014.03.019
dc.identifier.urihttps://hdl.handle.net/20.500.12712/15035
dc.descriptionSyed, Abbas/0000-0001-5694-2011; Momani, Shaher M./0000-0002-6326-8456en_US
dc.descriptionWOS: 000337207500017en_US
dc.description.abstractObjective: Objective of this work is to study the fractional counterpart of the Irving-Mullineux nonlinear oscillator equation and compare the result with the integer order equation theoretically as well as numerically. Methods: For analytical results we use contraction principle to show the existence of the solution and then eigenvalue analysis to check the stability of the equilibrium points. Adams-type predictor-corrector method has been used for the numerical simulation. Results: Stability conditions are given in terms of the parameter epsilon. Numerical simulations indicate that the fractional differential equation shows stable result compared to their integer counterpart. Conclusion: The obtained results shown that the stability depends on the parameters and numerical results indicate that the fractional system may stabilize the corresponding integer order system. The results obtained also show that when alpha -> 1, the solutions of fractional equation reduce to the solution of corresponding integer equation. (C) 2014 Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipSERB, India [SR/FTP/MS-011/2011]en_US
dc.description.sponsorshipWe are thankful to anonymous reviewers for their constructive comments and suggestions which help us to improve the manuscript. The work of first author is partially supported by the project "SR/FTP/MS-011/2011" by SERB, India.en_US
dc.language.isoengen_US
dc.publisherElsevier Science Bven_US
dc.relation.isversionof10.1016/j.sigpro.2014.03.019en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCaputo's derivativeen_US
dc.subjectLipschitz conditionen_US
dc.subjectAdams-type predictor-corrector methoden_US
dc.titleDynamical analysis of the Irving-Mullineux oscillator equation of fractional orderen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume102en_US
dc.identifier.startpage171en_US
dc.identifier.endpage176en_US
dc.relation.journalSignal Processingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster