• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Adsorption Efficiency For the Removal Malachite Green and Acid Blue 161 Dyes By Waste Marble Dust Using Ann

Tarih

2014

Yazar

Coruh, S.
Gurkan, H. E.
Kilic, E.
Geyikci, F.

Üst veri

Tüm öğe kaydını göster

Özet

In the present study, batch adsorption studies were performed for the removal of malachite green and acid blue 161 dyes from aqueous solutions by varying parameters such as contact time, waste marble dust amount, initial dye concentration and temperature. The equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin adsorption isotherm models. The Langmuir and Freundlich adsorption models agree well with experimental data. The pseudo-second order, intraparticle intraparticle diffusion and Elovich kinetic models were applied to the experimental data in order to describe the removal mechanism of dye ions by waste marble dust. The pseudo-second order kinetic was the best fit kinetic model for the experimental data. Thermodynamics parameters such as Delta G, Delta H and Delta S were also calculated for the adsorption processes. The experimental data were used to construct an artificial neural network (ANN) model to predict removal of malachite green and acid blue 161 dyes by waste marble dust. A three-layer ANN, an input layer with four neurons, a hidden layer with 12 neurons, and an output layer with one neuron is constructed. Different training algorithms were tested on the model to obtain the proper weights and bias values for ANN model. The results show that waste marble dust is an efficient sorbent for malachite green dye and ANN network, which is easy to implement and is able to model the batch experimental system.

Kaynak

Global Nest Journal

Cilt

16

Sayı

4

Bağlantı

https://hdl.handle.net/20.500.12712/14875

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.