Basit öğe kaydını göster

dc.contributor.authorYildiz, Zeynep
dc.contributor.authorUzun, Harun
dc.date.accessioned2020-06-21T13:46:43Z
dc.date.available2020-06-21T13:46:43Z
dc.date.issued2015
dc.identifier.issn1387-1811
dc.identifier.issn1873-3093
dc.identifier.urihttps://doi.org/10.1016/j.micromeso.2015.01.037
dc.identifier.urihttps://hdl.handle.net/20.500.12712/14345
dc.descriptionWOS: 000352927000006en_US
dc.description.abstractIn this study, artificial neural network was developed to forecast adsorption capacity of hydrogen gas in metal organic frameworks. Surface area, adsorption enthalpy, temperature and pressure were selected as input parameters. Hydrogen storage capacities of MOFs were computed using these four parameters. An artificial neural network was used to model the adsorption process. The prediction results were remarkably agreed with the experimental data. (C) 2015 Elsevier Inc. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.micromeso.2015.01.037en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdsorptionen_US
dc.subjectArtificial neural networken_US
dc.subjectGas storageen_US
dc.subjectMOFsen_US
dc.titlePrediction of gas storage capacities in metal organic frameworks using artificial neural networken_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume208en_US
dc.identifier.startpage50en_US
dc.identifier.endpage54en_US
dc.relation.journalMicroporous and Mesoporous Materialsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster