• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis, molecular structure, spectroscopic characterization, NBO, NLO and NPA analysis and in vitro cytotoxicity study of 3-chloro-N-(4-sulfamoylphenethyl)propanamide with experimental and computational study

Date

2016

Author

Durgun, Mustafa.
Ceylan, Umit
Yalcin, Serife Pinar
Turkmen, Hasan
Özdemir, Namık
Koyuncu, Ismail

Metadata

Show full item record

Abstract

In present work, the sulfonamide compound, 3-chloro-N-(4-sulfamoylphenethyl)propanamide, has been synthesized and characterized by FT-IR, H-1-NMR, C-13-NMR, UV-vis and X-Ray single crystal determination. The compound crystallizes in the monoclinic space group P2(1)/c with a = 8.4493(4) angstrom, b = 17.5875(7) angstrom, c = 9.2593(4) angstrom and beta = 103.579(4)degrees, and Z = 4 in the unit cell. The molecular geometry from X-ray experiment in the ground state and vibrational frequencies, H-1 and C-13-NMR chemical shifts, absorption wavelengths have been calculated by using the Density Functional Theory (DFT) method with 6-311++G(d,p) basis set and compared with the experimental values. In addition, Molecular Electrostatic Potential (MEP), Natural Bond Orbital (NBO), Frontier Molecular Orbital (FMO) analysis, thermodynamic properties, dipole moments, and HOMO-LUMO energy were also computed. The calculated results show that the optimized geometry can well reproduce the crystal structure parameters, and the vibrational frequencies, H-1 and C-13-NMR chemical shifts, absorption wavelengths are in agreement with experimental values. Further, the synthesized compound was evaluated for in vitro cytotoxic activity against various tumour cells and normal cell line using MTT assay. The synthesized compound show the highest antiproliferative effect against ECC-1 tumour cells (IC50 = 0,167 mM), while the lowest cytotoxic activity against normal cell (HEK-293 and PNT1A) cell line (IC50 = 0.603 and 0.696 mM, respectively). (C) 2016 Elsevier B.V. All rights reserved.

Source

Journal of Molecular Structure

Volume

1114

URI

https://doi.org/10.1016/j.molstruc.2016.02.062
https://hdl.handle.net/20.500.12712/13293

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.