• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

High order fuzzy time series forecasting method based on an intersection operation

Tarih

2016

Yazar

Yolcu, Ozge Cagcag
Yolcu, Ufuk
Egrioglu, Erol
Aladag, C. Hakan

Üst veri

Tüm öğe kaydını göster

Özet

The use of non-stochastic models such as fuzzy time series forecasting models for time series analysis has attracted the attention of researchers in recent years. Fuzzy time series forecasting models do not need strict assumptions, whereas conventional stochastic models need to satisfy some assumptions. In addition, fuzzy time series methods can be used if the observations of time series have uncertainty. Fuzzy time series approaches comprise three basic steps: fuzzification of the crisp observations, identification of fuzzy relations, and defuzzification. In previous studies, many methods have been proposed that allow all of these stages to obtain more accurate forecasting results. One of the weakest features of fuzzy time series methods is that the membership values are not considered in the forecasting process. This problem can be eliminated in first order approaches by using artificial neural networks to describe fuzzy relations. When determining the fuzzy relations, the membership values are not ignored if the inputs and outputs of the neural networks are the membership values for the periods t - 1 and t, respectively. However, the number of inputs of neural networks will increase greatly if this approach is extended to high order models. Thus, it will be very difficult to train these neural networks. In this study, we propose a novel high-order fuzzy time series approach that considers the membership values, where artificial neural networks are employed to identify the fuzzy relations. In the proposed method, intersection operators are utilized to deal with an excessive number of inputs. In addition, the fuzzy c-means method is employed for fuzzification. The forecasting performance was evaluated by applying the proposed method to well-known time series data sets and the results obtained were compared with those produced by previously described forecasting methods. The superior performance of our proposed method was also supported by a simulation study. (C) 2016 Elsevier Inc. All rights reserved.

Kaynak

Applied Mathematical Modelling

Cilt

40

Sayı

19-20

Bağlantı

https://doi.org/10.1016/j.apm.2016.05.012
https://hdl.handle.net/20.500.12712/13081

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.