Basit öğe kaydını göster

dc.contributor.authorBayram, Ergin
dc.contributor.authorKasap, Emin
dc.date.accessioned2020-06-21T13:27:49Z
dc.date.available2020-06-21T13:27:49Z
dc.date.issued2017
dc.identifier.issn1844-9581
dc.identifier.urihttps://hdl.handle.net/20.500.12712/12852
dc.descriptionWOS: 000401266000004en_US
dc.description.abstractLet alpha(s) be an arc on a connected oriented surface S in E-3, parameterized by arc length s, with curvature k and length l. The total square curvature K of alpha is defined by K=integral(1)(0)kappa(2)The arc alpha is called a relaxed elastic line if it is an extremal for the variational problem of minimizing the value of K within the family of all arcs of length l on S having the same initial point and initial direction as alpha In this study, we show that a geodesic is a relaxed elastic line if and only if it is planar and an asymptotic curve cannot be a relaxed elastic line. Also, we obtain a criterion for a line of curvature to be a relaxed elastic line.en_US
dc.language.isoengen_US
dc.publisherEditura Bibliotheca-Bibliotheca Publ Houseen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRelaxed elastic lineen_US
dc.subjectgeodesicen_US
dc.subjectline of curvatureen_US
dc.subjectasymptotic curveen_US
dc.titleGeodesics, Line of Curvatures and Asymptotic Curves Versus Relaxed Elastic Lines on An Oriented Surfaceen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.issue1en_US
dc.identifier.startpage37en_US
dc.identifier.endpage40en_US
dc.relation.journalJournal of Science and Artsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster