dc.contributor.author | Bayram, Ergin | |
dc.contributor.author | Kasap, Emin | |
dc.date.accessioned | 2020-06-21T13:27:49Z | |
dc.date.available | 2020-06-21T13:27:49Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1844-9581 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/12852 | |
dc.description | WOS: 000401266000004 | en_US |
dc.description.abstract | Let alpha(s) be an arc on a connected oriented surface S in E-3, parameterized by arc length s, with curvature k and length l. The total square curvature K of alpha is defined by K=integral(1)(0)kappa(2)The arc alpha is called a relaxed elastic line if it is an extremal for the variational problem of minimizing the value of K within the family of all arcs of length l on S having the same initial point and initial direction as alpha In this study, we show that a geodesic is a relaxed elastic line if and only if it is planar and an asymptotic curve cannot be a relaxed elastic line. Also, we obtain a criterion for a line of curvature to be a relaxed elastic line. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Editura Bibliotheca-Bibliotheca Publ House | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Relaxed elastic line | en_US |
dc.subject | geodesic | en_US |
dc.subject | line of curvature | en_US |
dc.subject | asymptotic curve | en_US |
dc.title | Geodesics, Line of Curvatures and Asymptotic Curves Versus Relaxed Elastic Lines on An Oriented Surface | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 37 | en_US |
dc.identifier.endpage | 40 | en_US |
dc.relation.journal | Journal of Science and Arts | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |