dc.contributor.author | Bicer, Cigdem | |
dc.contributor.author | Nebiyev, Celil | |
dc.contributor.author | Pancar, Ali | |
dc.date.accessioned | 2020-06-21T13:12:55Z | |
dc.date.available | 2020-06-21T13:12:55Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1787-2405 | |
dc.identifier.issn | 1787-2413 | |
dc.identifier.uri | https://doi.org/10.18514/MMN.2018.1974 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/11940 | |
dc.description | WOS: 000441460300011 | en_US |
dc.description.abstract | In this work, we define (amply) generalized supplemented lattices and investigate some properties of these lattices. In this paper, all lattices are complete modular lattices with the smallest element 0 and the greatest element 1. Let L be a lattice, 1 = a(1) v a(2) v ... v a(n) and the quotient sub lattices a(1)/0, a(2)/0,..., a(n)/ 0 be generalized supplemented, then L is generalized supplemented. If L is an amply generalized supplemented lattice, then for every a is an element of L, the quotient sublattice 1 /a is amply generalized supplemented. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Univ Miskolc Inst Math | en_US |
dc.relation.isversionof | 10.18514/MMN.2018.1974 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | lattices | en_US |
dc.subject | supplemented lattices | en_US |
dc.subject | amply supplemented lattices | en_US |
dc.subject | hollow lattices | en_US |
dc.title | Generalized Supplemented Lattices | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 19 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 141 | en_US |
dc.identifier.endpage | 147 | en_US |
dc.relation.journal | Miskolc Mathematical Notes | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |