• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Work Accident Analysis with Machine Learning Techniques

Date

2018

Author

Sahin, Durmus Ozkan
Sirin, Burce
Akleylek, Sedat
Kilic, Erdal

Metadata

Show full item record

Abstract

All over the world, serious investments have been made in recent years on workers' health and safety. With the importance given to health and safety of workers, new studies have been performed. In this study, data mining and machine learning techniques are applied to the real worker accident data. Firstly, data cleaning and feature selection are performed to use machine learning algorithms, then the classification result obtained by using K-nearest neighbors (KNN) and Naive Bayes (NB) classification algorithms. Accuracy and F-measure metrics were used to measure classification success. The highest success rate was obtained with the KNN algorithm by 10 cross-validation. These values are 0.994075 and 0.993257 for the accuracy and F measure respectively.

Source

2018 3Rd International Conference on Computer Science and Engineering (Ubmk)

URI

https://hdl.handle.net/20.500.12712/11805

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.