• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrological modelling of karst catchment using lumped conceptual and data mining models

Tarih

2019

Yazar

Sezen, Cenk
Bezak, Nejc
Bai, Yun
Sraj, Mojca

Üst veri

Tüm öğe kaydını göster

Özet

Hydrological modelling is a challenging and significant issue, especially in nonhomogeneous catchments in terms of geology, and it is an essential part of water resources management. In this study, daily rainfall-runoff modelling was carried out using the lumped conceptual model, the artificial neural network (ANN), the deep-neural network (DNN), and regression tree (RT) data mining models for the nonhomogeneous karst Ljubljanica catchment and four of its sub-catchments in Slovenia with different geological characteristics. Model performance was evaluated using several performance criteria and additional investigation of low and high flows was carried out. The results of the study indicate that the Genie Rural a 4 parametres Journalier (GR4J) lumped conceptual model yielded better modelling performance compared to the data-driven models, namely ANN, DNN and RT models. Moreover, the enhanced version of the GR4J model (i.e. GR6J) also yielded good performance in terms of the recession part. The RT model yielded the worst performance regarding runoff forecasting among the examined models in the case of all five investigated catchments. However, ANN and DNN data-driven models were slightly more successful in modelling the hydrograph recession in the case of karst sub-catchments compared to the GR4J lumped conceptual model structure. Inclusion of additional meteorological variables to ANN and DNN does not significantly improve modelling results.

Kaynak

Journal of Hydrology

Cilt

576

Bağlantı

https://doi.org/10.1016/j.jhydrol.2019.06.036
https://hdl.handle.net/20.500.12712/10642

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.