Basit öğe kaydını göster

dc.contributor.authorDunder, Emre
dc.date.accessioned2020-06-21T12:19:15Z
dc.date.available2020-06-21T12:19:15Z
dc.date.issued9999
dc.identifier.issn0361-0926
dc.identifier.issn1532-415X
dc.identifier.urihttps://doi.org/10.1080/03610926.2019.1708395
dc.identifier.urihttps://hdl.handle.net/20.500.12712/10371
dc.descriptionWOS: 000504943100001en_US
dc.description.abstractInformation criterion is an essential measure in data analysis. Primarily, information criterion is used to choose the statistical models. Because of that role, the development of the criteria becomes very crucial issue. In this study, a modified version of Fisher information criterion (FIC) is proposed to improve the classical FIC. Shrinkage estimation is adopted within FIC and also an additional penalty term is added multiplicatively. Suggested criterion is experienced on Lasso regression. The performance of the modified FIC is illustrated on simulated and real data sets. Empirical evidences demonstrate the success of the modified version of FIC for model selection when comparing with traditional criteria.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.isversionof10.1080/03610926.2019.1708395en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFisher information criterionen_US
dc.subjectlasso regressionen_US
dc.subjectshrinkage covariance matrixen_US
dc.titleA modified information criterion for model selectionen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.relation.journalCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster