• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chestnut (Castanea sativa Mill.) cultivar classification: an artificial neural network approach

Tarih

2020

Yazar

Oztekin, Yesim Benal
Taner, Alper
Duran, Huseyin

Üst veri

Tüm öğe kaydını göster

Özet

The present study investigated the possible use of artificial neural networks (ANN) to classify five chestnut (Castanea sativa Mill.) varieties. For chestnut classification, back-propagation neural networks were framed on the basis of physical and mechanical parameters. Seven physical and mechanical characteristics (geometric mean diameter, sphericity, volume of nut, surface area, shell thickness, shearing force and strength) of chestnut were determined. It was found that these characteristics were statistically different and could be used in the classification of species. In the developed ANN model, the design of the network is 7-(5-6)-1 and it consists of 7 input, 2 hidden and 1 output layers. Tansig transfer functions were used in both hidden layers, while linear transfer functions were used in the output layer. In ANN model, R-2 value was obtained as 0.99999 and RMSE value was obtained as 0.000083 for training. For testing, R-2 value was found as 0.99999 and RMSE value was found as 0.00031. In the approximation of values obtained with ANN model to the values measured, average error was found as 0.011%. It was found that the results found with ANN model were very compatible with the measured data. It was found that the ANN model obtained can classify chestnut varieties in a fast and reliable way.

Kaynak

Notulae Botanicae Horti Agrobotanici Cluj-Napoca

Cilt

48

Sayı

1

Bağlantı

https://doi.org/10.15835/nbha48111752
https://hdl.handle.net/20.500.12712/10309

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.