Basit öğe kaydını göster

dc.contributor.authorBulut, Hasan
dc.date.accessioned2020-06-21T12:18:39Z
dc.date.available2020-06-21T12:18:39Z
dc.date.issued9999
dc.identifier.issn0361-0926
dc.identifier.issn1532-415X
dc.identifier.urihttps://doi.org/10.1080/03610926.2020.1719420
dc.identifier.urihttps://hdl.handle.net/20.500.12712/10254
dc.descriptionWOS: 000511643300001en_US
dc.description.abstractOutlier detection is an extensively studied issue in robust literature. The most popular and traditional approach using to detect outliers is to calculate the Mahalanobis distance. However, conventional Mahalanobis distances may fail to detect outliers because they base on the classical sample mean vector and covariance matrix, which are sensitive to outliers. To solve this problem, the Minimum Covariance Determinant (MCD) estimators are used instead of classical estimators. However, the MCD estimators cannot be calculated in high dimensional data sets, which variable number p is higher than the sample size n. To detect outliers in high dimensional data, we propose Mahalanobis distance based on the Minimum Regularized Covariance Determinants (MRCD) estimators, which can be calculated in high dimensional data sets. We have shown that this distance is successful for outlier detection in high dimensional data sets with the simulation study and real data sets.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.isversionof10.1080/03610926.2020.1719420en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMahalanobis distancesen_US
dc.subjectrobust distancesen_US
dc.subjectminimum regularized covariance estimatorsen_US
dc.subjectminimum diagonal product estimatorsen_US
dc.subjecthigh dimensional dataen_US
dc.titleMahalanobis distance based on minimum regularized covariance determinant estimators for high dimensional dataen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.relation.journalCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster